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Abstract. Parallel Boundary Element Method (BEM) analyses are typ-
ically conducted using a purpose-built software framework called BEM-
BB. This framework requires a user-defined function program that cal-
culates the i-th row and the j-th column of the coe�cient matrix arising
from the convolution integral term in the fundamental BEM equation.
Owing to this feature, the framework can encapsulate MPI and OpenMP
hybrid parallelization with H-matrix approximation. Therefore, users
can focus on implementing a fundamental solution or a Green’s func-
tion, which is the most important element in BEM and depends on the
targeted physical phenomenon, as a user-defined function. However, the
framework does not consider single instruction multiple data (SIMD)
vectorization, which is important for high-performance computing and
is supported by the majority of existing processors. Performing SIMD
vectorization of a user-defined function is di�cult because SIMD exploits
instruction-level parallelization and is closely associated with the user-
defined function. In this paper, a conceptual framework for enhancing
SIMD vectorization is proposed. The proposed framework is evaluated
using two BEM problems, namely, static electric field analysis with a
perfect conductor and static electric field analysis with a dielectric, on
Intel Broadwell (BDW) processor and Intel Xeon Phi Knights Landing
(KNL) processor. It o↵ers good vectorization performance with limited
SIMD knowledge, as can be verified from the numerical results obtained
herein. Specifically, in perfect conductor analyses conducted using the
H-matrix, the framework achieved performance improvements of 2.22x
and 4.34x compared to the original BEM-BB framework for the BDW
processor and KNL, respectively.

1 Introduction

The boundary element method (BEM) has several scientific applications. This
method requires fewer unknowns and has a lower meshing cost compared to
other volume discretization methods because it requires only the surface of the
target objects for analysis. However, the computational cost and memory foot-
print of BEM analysis are significantly high because a dense coe�cient matrix is
generated during the analysis. To overcome these problems, parallel computing
and approximation techniques, such as hierarchical matrices (H-matrices) [1–3],
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H
2-matrices [4], and the fast multipole method (FMM) [5] are often used for

BEM analysis. Although these techniques have huge programming costs, BEM-
BB [6], an open-source software framework for parallel BEM analysis, is useful
to for reducing these costs. The framework employs H-matrices to approximate
the dense coe�cient matrix, and it is parallelized using the MPI and OpenMP
models. The BEM-BB framework allows for faster BEM analysis on parallel
computers by simply preparing programs to calculate the integrals of boundary
elements, settings of boundary conditions, and analysis output. In addition, the
parallelization and the approximation programs are encapsulated in the frame-
work. Thus, users can concentrate on developing the most important aspects of
BEM analysis, namely, a user-defined function for calculating the i-th row and
the j-th column of the coe�cient matrix. Furthermore, the user-defined function
may vary depending on the targeted physical phenomena.

However, this framework does not consider single instruction multiple data
(SIMD) vectorization, which is important for achieving high-performance com-
puting on existing processors. For example, the most recent Intel processors, such
as Skylake EP/EX and Xeon Phi Knights Landing (KNL), support AVX-512,
that is, a 512-bit SIMD instruction set. SIMD vectorization cannot be separated
from user-defined functions, unlike in MPI and OpenMP parallelization, because
SIMD vectorization is instruction-level parallelization and because user-defined
functions can vary. However, SIMD vectorization is di�cult for application pro-
grammers because it requires knowledge of the compiler and the target processor
architecture.

In this paper, we present a framework design based on BEM-BB for SIMD
vectorization. A design to encapsulate SIMD-related aspects is proposed. In ad-
dition, we evaluate the performance of the proposed framework by solving two
problems, namely, static electric field analysis with a perfect conductor and static
electric field analysis with a dielectric, which contain di↵erent user-defined func-
tions, on Intel Broadwell processor (BDW) and Intel Xeon Phi Knights Landing
(KNL). We compare the performance of the proposed framework with the orig-
inal framework and that of hand-tuned user functions. The results show that
the proposed framework o↵ers performance improvements of 2.22x and 4.34x
compared to the original framework for the BDW processor and the KNL pro-
cessor, respectively. Furthermore, the experimental results demonstrate that the
performance of the framework is comparable to that achieved using the hand-
tuned programs

The remainder of this paper is organized as follows. In Section 2, we provide
an overview of the BEM-BB framework. The proposed framework is described in
Section 3. Numerical experiments involving electric field analysis are described
in Section 4, and a few conclusions and suggestions for future work are presented
in Section 6.
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2 BEM-BB framework

In this section, the BEM-BB framework, which is the baseline implementation in
this study, is introduced. The BEM-BB software framework is used for parallel
BEM analysis. It is implemented in the Fortran90 programming environment and
parallelized using the OpenMP + MPI hybrid programming model. To reduce
the computational cost of parallel programming, the framework supports model
data input, assembly of the coe�cient matrix, and solution of linear systems,
steps that are generally required in BEM analysis. When employing this frame-
work, users are required to generate user-defined functions that calculate each
element of the coe�cient matrix. In other words, users are required to implement
a program to calculate the integrals of boundary elements, which depend on the
governing target of BEM analysis. The target integral equation of the BEM-BB
framework is described as follows. For f 2 H

0, u 2 H and a kernel function of a
convolution operator g : Rd

⇥⌦ ! R,
Z

⌦
g(x, y)u(y)dy = f (1)

where ⌦ ⇢ Rd denotes a (d � 1)-dimensional domain, H the Hilbert space of
functions on a ⌦, and H

0 dual space of H. To numerically calculate Eq.(1),
we divide the domain, ⌦, into the elements ⌦h = {!j : j 2 J}, where J is
an index set. In weighted residual methods, such as the Ritz-Galerkin method
and the collocation method, the function u is approximated from a n-dimensional
subspace Hh

⇢ H. Given a basis ('i)i2i of Hh for an index set i := {1, . . . , N},
the approximant u

h
2 H

h-u can be expressed using a coe�cient vector � =
(�i)i2i that satisfies uh =

P
i2i �i'i. Note that the supports of the basis ⌦h

'i
:=

supp ' are assembled from the sets !j . Equation (1) is then reduced to the
following system of linear equations.

A� = b (2)

Aij =

Z

⌦
'i(x)

Z

⌦
g(x, y)'(y)dydx (3)

bi =

Z

⌦
'i(x)fdx (4)

Here, i, j 2 i. The user-defined function required to calculate the elements of
the i-th row and the j-th column of the coe�cient matrix is expressed as Eq.(3).

There are two versions of the implementation: one based on dense matrix
computations and the other based on H-matrix computations. Although the H-
matrix version depends on the distributed parallelH-matrix libraryHACApK [7],
the problems of vectorization are similar. As shown in Fig. 1, the proposed
framework consists of three components: model data input, coe�cient matrix
generation, and linear solver. In this study, the objective is to interface coe�-
cient matrix generation with user-defined function. Therefore, we focus on the
coe�cient matrix generation component.
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Fig. 2. Parallel generation of coe�cient dense matrix and H-matrix.

Fig. 2 shows the coe�cient matrix generation part. The target coe�cient
matrix is distributed to multiple thread and each thread sequentially calculates
the i-th row and the j-th column element by using user-defined function. The
coe�cient matrices generated using the dense matrix version and the H-matrix
version are a dense matrix and an H-matrix, respectively. A H-matrix is also
called a hierarchical matrix. H-matrices are among the techniques used to ap-
proximate dense matrices. An H-matrix is a set of low-rank approximated sub-
matrices and small dense sub-matrices as shown in Fig. 2. HACApK generates
the coe�cient H-matrix by exploiting the user-defined function according to the
Adaptive Cross Approximation (ACA) algorithm [9]. The ACA algorithm is an
approximation technique used to generate a low-rank approximated matrix of a
dense matrix without generating the target dense matrix.
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1 real (8) function ppohBEM_matrix_element_ij(i,j,nond ,nofc ,nond_on_fc ,np,

intpara_fc ,nint_para_fc ,dble_para_fc ,ndble_para_fc ,face2node)

2 !$omp declare simd

3 type :: coordinate

4 real (8) :: x,y,z

5 end type coordinate

6 integer ,intent(in) :: i,j,nond ,nofc ,nond_on_fc ,nint_para_fc ,

ndble_para_fc

7 type(coordinate),intent(in) :: np(*)

8 integer , intent(in) :: face2node (3,*),int_para_fc(nint_para_fc ,*)

9 real (8), intent(in) :: dble_para_fc(ndble_para_fc ,*)

10

11 ! User defined calculations for the i-th row and the j-th column

element

12

13 end function ppohBEM_matrix_element_ij

Fig. 3. An interface of a user-defined function to calculate the i-th row and the j-th
column element of the coe�cient matrix. The function arguments after i and j are
used as input variable of the calculation.

1 do i=lhp , ltp

2 !$omp simd

3 do j=j_st , j_en

4 a(j,i) = ppohBEM_matrix_element_ij( i, j, nond , nofc , &

5 nond_on_fc , np, intpara_fc , &

6 nint_para_fc , dble_para_fc , &

7 ndble_para_fc , face2node )

8 enddo

9 enddo

Fig. 4. User-defined function caller for dense matrix. Here, a(j,i) is a coe�cient dense
matrix. The ranges of i and j are assigned to each thread adequately.

The interface of the user-defined function is shown in Fig. 3. In both versions,
the function is called from each thread concurrently. To vectorize the user-defined
function, the caller of the function, too, is important. Figures 4 and 5 show
the callers of the user-defined functions of the dense matrix version and the H-
matrix version, respectively. Both programs call the user-defined function in loop
structures. These loops are the target of SIMD vectorization. In the following
sections, we treat the implementation shown in Fig. 4 as the baseline.

3 Framework Design for SIMD Vectorization with

OpenMP SIMD Directives

In general, three methods are used to perform SIMD vectorization: (1) relying
on compiler auto-vectorization, (2) using compiler directives, and (3) using in-
trinsic functions. However, vectorization using intrinsic functions is cumbersome
job, and the required intrinsic functions depend completely on the user-defined
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1 if( column vector calculation )

2 i = ip + nstrtl -1

3 !$omp simd private(j)

4 do ii=1,s_m

5 if(colmsk(ii)==0) then

6 j = ii + nstrtt -1

7 colvec(ii)=HACApK_entry_ij(i,j,st_bemv)

8 endif

9 enddo

10 else if( row vector calculation )

11 j = ip + nstrtt -1

12 !$omp simd private(i)

13 do ii=1,t_m

14 if(rowmsk(ii)==0) then

15 i = ii + nstrtl -1

16 rowvec(ii)=HACApK_entry_ij(i,j,st_bemv)

17 endif

18 enddo

19 endif

Fig. 5. User-defined function caller for sub-matrix of H-matrix. Here, HA-
CApK entry ij is a wrapper function of ppohBEM matrix element ij. The structure
st bemv contains the variables required as arguments of the user-defined function.

function. In this study, we employ compiler auto-vectorization and the directive
method. To use SIMD instructions e�ciently, there are two constraints on the
SIMD target vectors.

– There should be no data dependency among the elements of the target vector.
– Vector elements should be stored contiguously.

In addition, to generate e�cient code by using compiler vectorizations, the code
should be obviously vectorizable from the compiler’s view point. Any new frame-
work design should consider the above points. Furthermore, the design should
be user-friendly. E�ciently vectorized SIMD code should be generated if users
are unaware of compiler requirements.

3.1 New interface definition for compiler vectorization

According to the two compiler requirements, the main problem associated with
vectorization pertains to data access. Even though the computations associated
with a user-defined function can be executed independently, if a compiler de-
tects possibilities of data dependency, it conservatively generates instructions
that are not fully vectorized. Therefore, we propose to handle data access and
computation separately in the proposed framework design. We introduce two
new interfaces set_args (Fig. 6) and vectorize_func (Fig. 7) for data ac-
cess and computation, respectively. Figure 8 shows the function caller based on
Fig. 4. The variables SIMDLENGTH, which appear in Figs. 7 and 8 and are de-
fined by users, represent the SIMD length of the target processor. For example,
the recommended SIMDLENGTH for KNL, which has a 512-bit (= sizeof(double)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_46

https://dx.doi.org/10.1007/978-3-319-93698-7_46


1 subroutine set_args(i,j,nond ,nofc ,nond_on_fc ,np,intpara_fc ,nint_para_fc ,

dble_para_fc ,ndble_para_fc ,face2node ,darg1 ,darg2 ,...,dargN ,iarg1 ,

iarg2 ,..., iargM)

2 real (8), intent(out) :: darg1 ,darg2 ,..., dargN

3 integer , intent(out) :: iarg1 ,iarg2 ,..., iargM

4

5 ! User defined data access for calculating an element of the i-th row

and the j-th column from arrays to scalar args

6

7 end subroutine set_args

Fig. 6. New interface for data access. The former arguments are the same as ppo-
hBEM matrix element ij. The latter arguments are the scalar variables used in vector-
ize func. The number of arguments depends on the target application.

⇥8) wide SIMD unit, is 8. From the compiler’s viewpoint, the !$omp simd loop
(Fig. 8 line 14) has no data dependency because the arguments and the return
values of vector_func have no alias and are accessed independently for each
iteration of the loop. In addition, the arguments and return values are stored
contiguously. At this point, if the SIMD interface of the vectorize_func corre-
sponds to the SIMD length, the loop (Fig. 8 lines 13-17) is vectorized similarly
to a vector function.

To safely vectorize vectorize_func, we constrain the function such that
it cannot contain globally accessible variables, allocatable arrays, or save vari-
ables. In addition, the SIMD interfaces of all functions or subroutines called from
vectorize_func should correspond to the SIMD length. This parallelization
method is similar to the Single Program Multiple Data (SPMD) programming
model because each SIMD element executes a single program simultaneously.

To reduce the data access cost, we introduce a pair of interfaces set_args_i
and set_args_j. In BEM analysis, the required data such as coordinate of the
i-th element and the j-th element usually depends only on the variables i and j,
respectively. Therefore, the subroutines set_args_i and set_args_j are used
to set arguments depending only on i and j, respectively. The pair of interfaces
work e↵ectively in theH-matrix version. As shown in Fig. 5, i and j are constants
in the lines 4-9 loop and lines 13-18 loop, respectively.

3.2 Using the framework

The new interfaces are easy to vectorize for compilers, but they are not user-
friendly. Specifically, the numbers of arguments of the set_args subroutine and
the vectorize_func function depend on the target application, which means
users are required to modify the framework program in order to add variable
declarations and correspond to the interface. In addition, users must vectorize the
user-defined functions by using !$omp declare simd pragma. Furthermore, if
users insert a wrong directive, the compiler generates a correct but unvectorized
slow executable, which is often more cumbersome compared to a bug.

To minimize these di�culties, we require users to prepare the followings.
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1 real (8) function vectorize_func(darg1 ,darg2 ,...,dargN ,iarg1 ,iarg2 ,...,

iargM)

2 !$omp declare simd simdlen(SIMDLENGTH)

3 real (8), intent(in) :: darg1 ,darg2 ,..., dargN

4 integer , intent(in) :: iarg1 ,iarg2 ,..., iargM

5

6 ! User defined calculations for an element of the i-th row and j-th

column

7

8 end function vectorize_func

Fig. 7. New calculation interface. This function should be called after the set args sub-
routine and vectorized. All arguments of this function should have intent(in) attribute.

– Implement include files.
– Implement the set_args, set_args_i, set_args_j and the vectorize

_func without the SIMD directives in the file “user func.f90”.
– Correctly implement the dummy function ppohBEM_matrix_element_ij

_dummy (Fig. 9) without modifying the dummy function itself.
– Provide SIMDLENGTH of the target processor by using the -D compiler flag.

The include files that appear in the dummy function are used in the subrou-
tine call interface. First, users of the framework must implement the include files
as a fill-in-the-blank puzzle to correct the dummy function. In other words, the
return value of the dummy function should be equal to ppohBEM_matrix_ele-
ment_ij. At this point, users need not consider SIMD vectorization. Notably,
users cannot modify the dummy function itself. If users do not need the set_args
function, they must create an empty ”call set args.inc” file. Second, the users
must implement the user-defined functions in ”user func.f90.” Notably, users
need not consider SIMD vectorization as well. Finally, users must define the
variable SIMDLENGTH by using a compiler option. During compiling, the com-
pile script automatically inserts SIMD directives into the user-defined functions
implemented in user func.f90 and automatically transforms the include files to
adjust the framework, as shown in Fig. 10. Based on the results of the auto-
transformation, we succeeded in separating almost all aspects related to SIMD
vectorization from the user-defined function. Therefore, users are required to set
only the SIMDLENGTH of the target processor.

4 Numerical Evaluations

4.1 Test Model and Processors

In this section, we evaluated the proposed framework by performing BEM analy-
sis of two electrostatic field problems. We assumed a perfectly conductive sphere
and a dielectric sphere. The electric potentials of the perfect conductor and the
dielectric are given by the following functionals P and D, respectively:
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1 real (8),dimension(SIMDLENGTH) :: ans

2 real (8),dimension(SIMDLENGTH) :: darg1 ,darg2 ,..., dargN

3 integer ,dimension(SIMDLENGTH) :: iarg1 ,iarg2 ,..., iargM

4 ...

5 do i=lhp , ltp

6 do jj=j_st , j_en , SIMDLENGTH

7 ii = 1

8 do j=jj,min(jj+SIMDLENGTH -1,j_en)

9 call set_args(i,j,..., darg1(ii),darg2(ii) ,...,dargN(ii) &

10 ,iarg1(ii),iarg2(ii) ,...,iargM(ii))

11 ii = ii+1

12 end do

13 !$omp simd

14 do ii = 1, SIMDLENGTH

15 ans(ii) = vectorize_func(darg1(ii),darg2(ii) ,...,dargN(ii) &

16 ,iarg1(ii),iarg2(ii) ,...,iargM(ii))

17 end do

18 ii = 1

19 do j=jj,min(jj+SIMDLENGTH -1,j_en)

20 a(j,i) = ans(ii)

21 ii = ii+1

22 end do

23 enddo

24 enddo

Fig. 8. User-defined function using new interface caller for dense matrix.

P[u](x) :=

Z

⌦

1

4⇡||x� y||
u(y)dy, x 2 ⌦ (5)

D[u](x) :=

Z

⌦

hx� y, n(y)i

4⇡||x� y||3
u(y)dy, x 2 ⌦ (6)

where ⌦ is the domain surface. Equation(5) and (6) correspond to Eq.(1) and
the details of them are described in [3]. The spheres were set at a distance of
0.25 m from the ground with zero electric potential. The radius of the spheres
was 0.25 m, and the electric potential of the spheres was 1 V.

For the numerical evaluations, we used the BDW and the KNL processors,
which have a 256-bit SIMD unit and a 512-bit SIMD unit, respectively. The pro-
cessor specifications are summarized in Table 1. For both processors, Intel For-
tran compiler ver. 18.0.1 was used. The compiler options for BDW were -align
array64byte -xAVX2 -qopenmp -O3 -fpp -ipo -lm -qopt-report=5
-DSIMDLENGTH=4, and those for KNL were -align array64byte -xMIC-AVX512
-qopenmp -O3 -fpp -ipo -lm -qopt-report=5 -DSIMDLENGTH=8.

4.2 Hand Tuning Using OpenMP SIMD Directives

To test the compiler vectorizations, we refactored and evaluated two user-defined
functions. Vectorization with compiler directives often requires users to converse
with the compiler. We tried to vectorize the user-defined functions by preparing
the following series of implementations.
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1 real (8) function ppohBEM_matrix_element_ij_dummy(i,j,nond ,nofc ,nond_on_fc

,np ,intpara_fc ,nint_para_fc ,dble_para_fc ,ndble_para_fc ,face2node)

2 implicit none

3 type :: coordinate

4 real (8) :: x,y,z

5 end type coordinate

6 integer ,intent(in) :: i,j,nond ,nofc ,nond_on_fc ,nint_para_fc ,

ndble_para_fc

7 type(coordinate),intent(in) :: np(*)

8 integer , intent(in) :: face2node (3,*),int_para_fc(nint_para_fc ,*)

9 real (8), intent(in) :: dble_para_fc(ndble_para_fc ,*)

10 integer :: ii ,jj,j_st ,j_en ,lhp ,ltp

11 real (8) :: ans

12 #include "declaration.inc"

13 #include "call_set_args_i.inc"

14 #include "call_set_args_j.inc"

15 #include "call_set_args.inc"

16 #include "vectorize_func.inc"

17 ppohBEM_matrix_element_ij_dummy = ans

18

19 end function ppohBEM_matrix_element_ij_dummy

Fig. 9. Dummy function of user-defined function. Although the function is not used in
the framework, users are required to implement this function correctly.

Table 1. Processor Specifications

Processor Name Number of cores Peak performance Length of SIMD unit
BDW Intel Xeon E5-2695 v4 18 605 GFlops 256 bit
KNL Intel Xeon Phi 7250 68 3,046 GFlops 512 bit

H1: Original implementation without compiler directives.
H2: !$omp simd directives are inserted above the SIMD target loops of H1.
H3: !$omp declare simd directives are inserted in the function shown in

Fig. 3 and all user-defined functions called from the function of H2 shown in
Fig.3.

H4: A simdlen(SIMDLENGTH) clause is attached to each !$omp simd and
!$omp declare simd directive of H3.

H5: Replace the user-defined functions of H4 with the set args and
vectorize func interfaces.

H6: The interfaces set args i and set args j are used as alternatives to
set args of H5.

H7: linear clauses are attached to a !$omp declare simd directive of
vectorize func of H6.

H8: uniform clauses are used as constant variables instead of linear clauses
of H7.

Implementations H1-H4 are based on the original framework. The di↵er-
ences among these implementations are only in terms of the OpenMP directives.
Therefore, users familiar with SIMD can implement H1-H4 with relative ease.
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User implementation
Used in the dummy function

real(8) :: darg1,darg2,...,dargN
integer :: iarg1,iarg2,...,iargM

declaration.inc

Automatically generated
Used in the framework

real(8),dimension(SIMDLENGTH) :: darg1,darg2,...,dargN
integer,dimension(SIMDLENGTH) :: iarg1,iarg2,...,iargM

declaration_simd.inc

ans = vectorize_func(darg1,darg2,…,dargN &
,iarg1,iarg2,…,iargN)

vectorize_func.inc

ans(ii) = vectorize_func(darg1(ii),darg2(ii),…,dargN(ii) &
,iarg1(ii),iarg2(ii),…,iargN(ii))

vectorize_func_simd.inc

real(8) function vectorize_func &
(darg1,darg2,…,dargN,iarg1,iarg2,…,iargN)
…

end

user_func.f90

real(8) function vectorize_func &
(darg1,darg2,…,dargN,iarg1,iarg2,…,iargN)

!$omp declare simd simdlen(SIMDLENGTH)  &
!$omp& linear(ref(darg1,darg2,…,dargN,iarg1,iarg2,…,iargN)

…
end

user_func_simd.f90

Fig. 10. The users program automatically transformed at the compile time.

Implementations H5-H8 are based on the proposed framework. Specifically, im-
plementation H7 corresponds to the automatically generated program. Note that
implementation H8 is more optimized than implementation H7. However, to au-
tomatically generate implementation H8, syntactic analysis is required. This will
be realized in the future.

Figures 11-14 show the increase in speed compared to the speed of imple-
mentation H1, and Table 2 summarizes the elapsed times of implementations
H1 and H7. The results discussed in this section are the averages of 10 mea-
surements. As summarized in Table 2, although we recommend the BEM-BB
H-matrix version, we evaluated the dense matrix version, the performance of
which depends to a greater extent on the user-defined function. The main dif-
ference between the two functions from the viewpoint of SIMD vectorization is
whether the function has a branch. Although the increase in speed in case of the
dielectric problem shows a trend similar to that in case of the perfect conductor
problem, it is slightly worse owing to the branch divergence caused by the dielec-
tric function. The results obtained by solving the perfect conductor problem on
a machine with the KNL processor (Fig.11) show that the proposed implemen-
tation (H7) achieved performance improvements of 4.34x and 6.62x compared
to implementation H0 for the H-matrix and the dense matrix versions, respec-
tively. The theoretical speedup with SIMD vectorization equals SIMDLENGTH,
and the results of the dense matrix version demonstrate that the framework
improves SIMD vectorization performance considerably. In the results obtained
on a machine with the BDW processor (Fig.13), implementation H7 achieved
performance improvements of 2.22x and 2.44x compared to implementation H0
for the H- matrix and the dense matrix versions, respectively
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Fig. 11. Solving perfect conductor prob-
lem using KNL processor
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Fig. 12. Solving dielectric problem using
KNL proccesor
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Fig. 13. Solving perfect conductor prob-
lem using BDW processor
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Fig. 14. Solving dielectric problem using
BDW processor

5 Related Work

The literature contains many studies about software frameworks for parallel PDE
solvers of the finite element method, such as GeoFEM [10] and Free FEM++ [11].
Moreover, H-matrices have been used in a few BEM applications [8, 12, 13], and
parallelized in their application. Although many frameworks allow for MPI +
OpenMP hybrid parallelization, few frameworks support SIMD vectorization,
which highly depends on user-defined functions. The main contribution of this
study is a SPMD-like SIMD vectorization method that handles data access and
computation separately, and hides SIMD-related aspects in the framework. The
method uses the characteristics of BEM analysis: the kernel function is rela-
tively computationally intensive, and there exists no data dependency among
the calculations of elements of coe�cient matrix.
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Table 2. The elapsed times of coe�cient generation component of original implemen-
tation (H1) and implementation of proposed framework (H7)

Perfect conductor Dielectric
KNL BDW KNL BDW

H-matrix Dense H-matrix Dense H-matrix Dense H-matrix Dense
H1 10.00 215.0 10.51 233.2 13.07 249.5 13.53 265.5
H7 2.307 32.47 4.728 95.61 3.167 44.11 7.140 126.10

6 Conclusion

We refined the open-source framework for parallel BEM analysis to enhance
SIMD vectorizations, which is important for realizing high-performance com-
puting. By using the refined framework design, we could successfully separate
SIMD-related aspects from the user-defined function, which depends on tar-
get applications. We evaluated the proposed framework by solving two static
electric field analysis problems containing di↵erent user-defined functions on
a BDW processor and a KNL processor. The numerical results demonstrated
the improved performance of the framework. Specifically, in solving the perfect
conductor problem by using the KNL processor, we achieved performance im-
provements of 4.34x and 6.62x in the H-matrix case and the dense matrix cases,
respectively.

The main contribution of this paper is separating the SIMD-related as-
pects from the user-defined function and hiding them to minimize the di�-
culties associated with SIMD. This SPMD-like SIMD vectorization technique
can be used for other applications. In the proposed framework, the arguments
of the vectorize func must be scalar variable. This specification is not user-
friendly but compiler-friendly. For example, to adjust the user-defined functions
in the proposed framework, we separated the vector argument coordinate(3)
to scalars x, y, and z. This type of transformation is a typical Array of Struc-
ture (AoS) to Structure of Array (SoA) transformation. To improve the not
user-friendly specification, we will challenge to support the AoS to SoA trans-
formation in future.
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