
The Design of Fast and Energy-Efficient Linear Solvers:
On the Potential of Half-Precision Arithmetic And

Iterative Refinement Techniques

Azzam Haidar1, Ahmad Abdelfattah1, Mawussi Zounon4, Panruo Wu2,
Srikara Pranesh4, Stanimire Tomov1, and Jack Dongarra134

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, USA
2 University of Houston, TX, USA

3 Oak Ridge National Laboratory, Oak Ridge, USA
4 University of Manchester, Manchester, U.K.

{haidar,ahmad,pwu11,tomov,dongarra}@icl.utk.edu
{mawussi.zounon,srikara.pranesh}@manchester.ac.uk

Keywords: FP16, Tensor Cores, Mixed-precision, HPC, Solvers

Abstract. As parallel computers approach exascale, power efficiency in high-
performance computing (HPC) systems is of increasing concern. Exploiting both
the hardware features and algorithms is an effective solution to achieve power
efficiency, and to address the energy constraints in modern and future HPC sys-
tems. In this work, we present a novel design and implementation of an energy-
efficient solution for dense linear systems of equations, which are at the heart of
large-scale HPC applications. The proposed energy-efficient linear system solvers
are based on two main components: (1) iterative refinement techniques, and (2)
reduced-precision computing features in modern accelerators and coprocessors.
While most of the energy efficiency approaches aim to reduce the consumption
with a minimal performance penalty, our method improves both the performance
and the energy efficiency. Compared to highly-optimized linear system solvers,
our kernels deliver the same accuracy solution up to 2× faster and reduce the
energy consumption up to half on Intel Knights Landing (KNL) architectures. By
efficiently using the Tensor Cores available in the NVIDIA V100 PCIe GPUs, the
speedups can be up to 4×, with more than 80% reduction in the energy consump-
tion.

1 Introduction

As parallel computers approach exascale, power efficiency in high-performance com-
puting (HPC) systems is of increasing concern. Over the last few decades, many chal-
lenges in science and engineering have been successfully addressed thanks to the im-
proving performance of HPC systems. However, it comes at a cost: electrical power
consumption. This leads to two main concerns—increase of the power bills beyond
affordable budgets, and increasing impact on the environment.

To help mitigate the power constraints in modern and future HPC systems, differ-
ent approaches have been investigated to assess and reduce the energy consumption of

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

scientific applications. So far, the most promising solution is the intensive use of field-
programmable gate arrays (FPGA) and graphics processing unit (GPU) technologies in
HPC applications [2]. To reduce the power consumption of HPC applications that still
require CPU processors, dynamic voltage and frequency scaling (DVFS) strategies are
commonly used [6]. In fact, the two most influential factors on the power consump-
tion of CPU cores are the clock frequencies and the voltages. As a result, most of the
energy-efficient strategies focus on DVFS methods with low performance overhead. In
this work we propose a new approach to energy efficiency, which, in addition to signif-
icantly decreasing the power consumption, radically improves the performance.

Another approach to energy efficiency is to redesign the most time-consuming ker-
nels in HPC applications and provide energy efficient alternatives. In this work we use
this approach. Solving linear systems of equations is at the heart of numerical simu-
lations used in HPC application, and is one of the most time-consuming steps. In this
work we design a novel energy-efficient algorithm for the solutions of linear system
of equations. To that end, we exploit both hardware solutions, such as energy efficient
NVIDIA GPUs and Intel Xeon Phis, and algorithmic techniques such as iterative re-
finement (IR) techniques.

The problem of interest in this work is the solution of linear systems of equations
Ax= b, where A is a general nonsingular n×n dense matrix, and b is a general n×1 vec-
tor. In most HPC applications, the input data A and b are stored in double precision, and
the solution x is expected in the same precision. The standard method for solving these
linear system of equations is via Gaussian elimination. However, the accuracy of the
obtained solution using this method is often unsatisfactory because of the round-off er-
rors it generates. The iterative refinement technique, first introduced by Wilkinson [21],
aims to improve the accuracy of the computed solution.

The iterative refinement algorithm for solving linear systems consists of the follow-
ing three steps. First, the computation of the initial solution x̄. This step is the most
expensive because it consumes O(n3) floating-point operations (FLOPs). Second, com-
putation of the residual r = b−Ax. This step consumes O(n2) FLOPs, and checks the
accuracy of the computed solution. Finally, the correction d is computed by solving
Ad = r, and next x̄ is updated by x̄← x̄+ d, which also requires O(n2) FLOPs. The
last two steps are iterated until a satisfactory accuracy is achieved. The original iterative
refinement algorithm used double precision for the three steps. However, the emergence
of multiple-precision floating-point arithmetic units in modern architectures motivated
the design of mixed-precision variants.

On modern architectures, single-precision floating-point arithmetic (FP32) is twice
as fast as double-precision floating-point arithmetic (FP64). For example, the Intel
Knights Landing (KNL) can deliver 3 teraFLOP/s of FP64 performance, but in FP32,
it can achieve more than 6 teraFLOP/s. In addition, the latest version of NVIDIA
accelerators—the V100 PCIe GPU—provides hardware support for half-precision floating-
point arithmetic (FP16). This new V100 PCIe GPU has a peak performance of 7 ter-
aFLOP/s in FP64, 14 teraFLOP/s in FP32, and 112 teraFLOP/s in FP16 using the Tensor
Cores. It is then possible to compute the most expensive operation (which is the matrix
factorization) in FP32 or FP16, and use FP64 in accuracy refinement iterations. The

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

different implementations of the resulting mixed iterative refinements are summarized
in Table 1.

Kernel Factorization refinement KNL V100

dgesv FP64 – 3 3

dsgesv FP32 FP64 3 3

dhgesv FP16 FP64 7 3

dhgesv-TC FP16-TC FP64 7 3

Table 1: Variants of iterative refinement implemented in this work. From left to right,
the first column lists the different kernels where the first entry dgesv is the standard
method without iterative refinement process. The second and the third columns specify,
respectively, the precision used for the factorization and refinement, where TC stands
for Tensor Core. In the last two columns, 3indicates we have implemented for the
corresponding architecture, 7indicates “arithmetic not supported.”

2 Contributions

This work aims to respond to the power constraints in modern and future HPC systems
through the design and implementation of fast and energy-efficient solvers for linear
systems of equations. To this end, our main contributions are:

– The design and implementation of a highly-optimized iterative refinement kernel
for Intel KNL architectures. Compared to the standard algorithm (dgesv), our ker-
nel (dsgesv) is up to 2× faster in delivering the same accuracy solution, and re-
duces the power consumption by half.

– Analysis of the energy efficiency of the high-bandwidth memory (HBM) multi-
channel dynamic random-access memory (MCDRAM) technology in Intel KNL
architectures.

– The design and implementation of very efficient iterative refinement kernels for the
NVIDIA V100 PCIe GPUs. Compared to the highly-optimized dgesv GPU kernel,
our solution dhgesv-TC, exploiting the Tensor Cores, achieves the same accuracy
of the solution up to 4× faster, and with up to 80% reduction in power consumption.

– Performance analysis of the NVIDIA V100 PCIe GPU, and insight into the possible
energy efficiency opportunities.

The rest of the paper is organized as follows. We discuss related work in Section 3,
and present the design and implementation details of our algorithm in Section 4. The
experimental configurations and results are discussed in Section 5, followed by con-
cluding remarks in Section 6

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

3 Related Works

Energy-Aware Algorithms for Scientific Computing: The first step toward the de-
sign of an energy-efficient system is an understanding of the power consumption of
its components. The PowerPack project [7] serves this objective by providing detailed
power-monitoring information on the disks, memories, NICs, processors, and even ap-
plications of HPC systems. Such power-monitoring details assist in identifying the most
energy-consuming components, and working out energy reduction plans. For exam-
ple, Global Extensible Open Power Manager (GEOPM) [5] provides a power manage-
ment framework that enables an automatic online rebalancing of power among nodes.
It also helps minimize the time-to-solution of applications while remaining within a
target power budget. Another class of energy-efficient algorithms consists of designing
energy-aware schedulers. The key idea is to divide an application into a set of tasks, and
estimate the optimal power budget of each task. Then the energy-aware scheduler dy-
namically changes the frequency and voltage of CPU cores depending on the task to ex-
ecute. This strategy is implemented by Adagio in a runtime system that makes dynamic
voltage scaling (DVS) practical for complex scientific applications [17]. A variant has
also been proposed by Kimura et al. [14], which uses DVFS to adapt the execution
speed of each task to reduce the power consumption without increasing the overall ex-
ecution time. Similar to DVFS, power-capping mechanisms, for example, to directly
set power limits were introduced and accessed by tools like the Intel Running Aver-
age Power Limit (RAPL). Haidar et al. [8] studied these power-capping mechanisms
and their effect in saving energy for various algorithms on Intel Xeon Phi architectures,
specifically KNL.

Accurate power management for NVIDIA GPUs can be done using NVIDIA’s Man-
agement Library (NVML) [16]. Work on validating it on dense linear algebra algorithms
has shown that results are within 10% accurate [13]. Algorithmic work on making nu-
merical libraries energy efficient for embedded systems with GPUs can be found in [9].

The History of Iterative Refinement: In the first version of iterative refinement intro-
duced by Wilkinson, the factorization and the refinement process used the same preci-
sion [21]. The rounding errors analysis by Skeel [18] for LU solver, and extended by
Higham [11] for a general solver, helped in gaining a deep understanding of iterative
refinement. Other than the accuracy improvement, there has been a renewed interest
in iterative refinement to improve the execution time of linear systems solvers in the
2000s. With FP32 twice as fast as FP64 on modern processors, Langou et al. [15], [1]
proposed a mixed-precision iterative refinement where the matrix factorization step is
in FP32 and everything else in FP64. More advanced versions of mixed-precision iter-
ative refinement using FP16 have been recently studied by Carson and Higham [3], [4]
with the corresponding parallel implementations by Haidar et al. in [10].

4 Algorithmic Techniques Toward Energy Efficiency

4.1 Motivation

The main motivation for using lower-precision arithmetic is the speedup that can be
achieved compared to the classical higher precision. We illustrate in Figure 1 the per-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

formance that can be achieved by LU factorization using different precisions and on
two different machines. In Figure 1a, we show the obtained performance of the LU
factorization (Xgetrf routine) on an NVIDIA V100 GPU for the four available pre-
cisions (FP64, FP32, FP16, and FP16-TC). We consider the FP16-TC as a precision
since it consists of a mixed-precision Xgemm, where the multiplication is performed
in FP16 while the accumulation is in FP32. Thus, FP16-TC is more accurate than the
classical FP16 computation. We also note that, in addition to being more accurate, the
FP16-TC is faster due to the use of Tensor Cores. As shown in Figure 1a, the FP16-TC
hgetrf-TC reaches about 4× speedup over its FP64 dgetrf counterpart. Furthermore,
as expected, the FP16 hgetrf and the FP32 sgetrf are about 3× and 2× faster than the
FP64 dgetrf. Similar behavior was observed on the Intel KNL 7250 system, reported
in Figure 1b. The LU factorization using FP32 achieves 2× speedup over the FP64

dgetrf. Such attractive performance results of the lower-precision LU guided our at-
tention to the possibility of solving the linear system Ax = b using a lower-precision LU
factorization combined with an IR process to bring the solution to the FP64 arithmetic.

matrix size
2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Nvidia V100
FP16-TC (Tensor Cores) hgetrf LU
FP16 hgetrf LU
FP32 sgetrf LU
FP64 dgetrf LU

(a) On a Nvidia V100 GPU.
Matrix size

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Pe
rf

or
m

an
ce

 G
flo

p/
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

KNL 7250 68 cores, data on MCDRAM (flat mode)
FP32 sgetrf LU
FP64 dgetrf LU

(b) On an Intel KNL 7250 68 cores.

Fig. 1: Performance of the Xgetrf routine with different arithmetic precisions.

4.2 Iterative Refinement Techniques

IR is one of the most promising techniques used to obtain a high-precision solution to
a linear equation using low-precision arithmetic for most of its computations. Specif-
ically, we use FP16 for the LU factorization, which consumes 2n3 FLOPs and FP64

for everything else. The idea of (mixed precision) iterative refinement is to solve a lin-
ear system using low precision for its speed, and then refine the solution by solving
the correction equation using high-precision arithmetic as shown in algorithm 1. How-
ever, traditional convergence analysis of IR depends on the assumption that the matrix
A is safely bounded away from singularity—meaning that its condition number (κ(A))

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

should be much less than u−1, the inverse of the computing precision. Put differently,
the condition κ(A)u < 1 should be satisfied. This condition seriously limits the appli-
cability of FP16 since the unit roundoff error is around u≈ 5×10−4, in which case the
condition number of A should be much less than u−1 ≈ 2000. Many well-conditioned
matrices in FP32 or FP64 will become ill-conditioned in FP16.

Data: An n×n matrix A, and size n vector b
Result: A solution vector xi approximating x in Ax = b, and a LU factorization of A = LU .
(FP16) Solve Ax0 = b using FP16 LU factorization and triangular solve;
i← 0;
repeat

(FP64) Compute residual ri← Axi−b;
(FP64) Solve Adi = ri using IR: triangular solve using the LU factors, or

IRGM: GMRES preconditioned by M = LU ;
(FP64) Update xi+1 = xi +di;
i← i+1;

until x(i) is accurate enough;

Algorithm 1: IR: classic mixed-precision iterative refinement using triangular
solve. IRGM: iterative refinement with GMRES to solve correction equation.

A recent study [4] relaxed this restrictive condition, and extended the application of
IR for matrices where κ(A)> u−1. They provided the following two new conditions to
guarantee the convergence of IR:

– The correction equation (Adi = ri) is solved relatively accurately: ‖di− d̂i‖∞/‖di‖∞ =
uθi < 1. Where θi is a constant depending on A, b, n, and u.

– The residual ri contains a significant amount of components in every direction of
the left singular vectors of A, such that we have µi ≤ 1 where µi defined as ‖ri‖=
µi‖A‖‖x− x̂i‖.

The first condition can be satisfied by replacing the typical LU-based solver for the
correction equation with a variant of the generalized minimal residual method (GM-
RES), preconditioned by the low-precision LU factors. This is made possible by two
observations: (1) even for an ill-conditioned matrix, the partial pivoting LU still con-
tains useful information. That is, using LU factors as preconditioner improves condition
number: κ(Û−1L̂−1A)≈ 1+κ(A)u even for κ(A)� u−1; (2) GMRES is backward sta-
ble. The second condition is empirically observed in numerical experiments.

The convergence rate of IRGM depends on the convergence behavior of GMRES,
which is complicated to predict. A preconditioner that is FP16 accurate M = LU ≈
A further complicates the convergence rate picture. In general, for normal matrix A
the GMRES converges faster as the condition number of A decreases, thus the low-
precision LU would be of help because the preconditioning decreases condition number
by a factor of u = 5× 10−4; for a non-normal matrix the convergence rate cannot be
entirely predicted by condition number. Thus, the convergence rate of IRGM depends

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

on the matrix type, spectral properties, and matrix size. Therefore, we take a primarily
empirical approach in the next sections.

We note that our iterative refinement process uses formula 1 as stopping criteria. The
purpose of this paper is not the numerical study of the convergence of the IR methods,
but rather to demonstrate how we can use techniques such as the IR methods to speed
up the solution and obtain large energy gains. We note that, as described above, there
is some limitation on where IR methods can work based on the matrices’ condition
number.

‖ b−Ax ‖∞

‖ x ‖∞ . ‖ A ‖∞

≤ ε
√

n (1)

To make the paper self-contained and to highlight matrices’ practical use of the IR
methods, we show how the different IR methods discussed in this paper converge toward
an FP64 solution. For that we illustrate in Figure 2 the convergence history of the three
IR methods on an NVIDIA Volta GPU for a practical problem where the condition
number of the matrix is about 104. The hardware detail is the same as the one described
in the next section. This study aims to provide an analysis of each arithmetic as well as
to provide insight into the expected performance from the iterative refinement methods.

iterations
0 1 2 3 4 5 6 7 8

re
si

d
u

al

10-20

10-15

10-10

10-5

100

FP16-TC-->FP64 IRGM (Tensor Cores)
FP16-->FP64 IRGM
FP32-->FP64 IRGM

Fig. 2: Convergence history for the iterative refinement with GMRES using the three
proposed low arithmetic for a matrix of size n = 10000, κ∞(A) = 104.

We observe that the FP32 technique requires 3 iterations, while the FP16 slightly
increases to about 7–8 iterations. Interestingly, the FP16-TC converges faster (4 itera-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

tions) than the FP16 and slightly slower than the FP32. This is because the accumulation
in the FP16-TC happens in FP32 arithmetic and thus produces a better result than the
FP16. We believe that the FP32 routine will achieve a 2× speedup and that both of
the FP16 routines will achieve about 3×–4× speedup while delivering a solution at the
FP64 accuracy. More details about the performance are provided in the next section.

5 Experimental Results

This section presents the performance results and the power measurements of our iter-
ative refinement methods—dhgesv-TC, dhgesv, and dsgesv—on either an NVIDIA
V100 GPU or an Intel KNL 7250. The performances are computed by dividing the
same FLOP count: 2

3 n3 by the time to solution. As a result, a high performance reflects
a fast time to solution. We used the KNL in self-hosted mode, i.e., without connection
to CPU. This is not the case for the V100 GPU, which is used as an accelerator. We use
LU factorization kernels from the Matrix Algebra on GPU and Multicore Architectures
(MAGMA) library [19,20] in order to exploit both the CPU cores and the V100 GPU
efficiently. Consequently, the V100 GPU performance results reported include both the
CPU and GPU execution times. In the same way, the V100 energy efficiency results in-
clude both the power consumption on CPU and GPU. For the power measurement, we
used the Performance Application Programming Interface (PAPI) [12], a performance-
monitoring library recently updated for an efficient and accurate power measurement
on both CPU and GPU.

5.1 Study of the Power Efficiency on KNL

The Intel KNL 7250 has two types of memory. A large 96 GB DDR4 memory provid-
ing up to 90 GB/s of bandwidth (e.g., the conventional DRAM memory) and a 16 GB
MCDRAM high-bandwidth memory that delivers up to 425 GB/s. The MCDRAM can
be configured into three modes: flat mode, cache mode and hybrid mode. In this experi-
ment, the KNL has been configured in flat mode—that is, the entirety of the MCDRAM
is used as an addressable memory. We mention that if the matrix size requires less than
16 GB, all these modes will behave the same.

Figure 3a and Figure 4a, show the performance obtained by our proposed FP32 IR
solver dsgesv, and the reference FP64 dgesv solver for a matrices with κ∞(A)≤ 104.
The number of iterations that the IR dsgesv required was not varying with the matrix
size and took about 3 or 4 iterations to achieve the FP64 solution. In the first experiments
displayed in Figure 3a, the data are allocated on the DDR4 memory. The direct solver
dgesv reaches an asymptotic performance of 1600 gigaFLOP/s, while the IR solver
dsgesv provides up to 2800 gigaFLOP/s; that represents 1.75× speedup over dgesv.
That’s the main motivation behind proposing IR methods to achieve higher performance
and thus better energy efficiency.

The speedup of the IR method is directly translated into energy savings. The corre-
sponding power consumption details are depicted in Figure 3b. In total, dgesv (orange
curve) consumed about 2610 Joules to compute the solution. The IR solver dsgesv
(purple curve) helps, achieving 43% of energy reduction by using only 1488 Joules to

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

deliver a similar accuracy solution. We have also displayed the gigaFLOP/s per Watt—
the higher the better—which is the common energy efficiency metric used in the HPC
community. The IR solver has an energy efficiency of 12.7 gigaFLOP/s per Watt, as
opposed to 7 gigaFLOP/s per Watt for the standard solver dgesv; this demonstrates the
energy efficiency of the IR solver. The power consumption of the sgesv function (green
curve) is illustrated only for sake of completeness and to determine—when compared
to the purple curve—the portion of the IR loop. In contrast to the compute intensive
portion (e.g., the LU factorization), we can see that the power of the IR loop drops to
about 160W. This is normal because memory-bound routines do not drain high power
since the CPU activity will be limited by the bandwidth and, thus, does not run at full
speed in order to drain the maximal power.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Pe
rf

or
m

an
ce

 G
flo

p/
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

KNL 7250 68 cores, data on DDR4 (flat mode)
FP64 solver dgesv
FP32 --> 64 solver dsgesv

(a) Achieved Performance, P= 2n3

3 meaning
higher is faster.

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

Performance
in Tflop/s

Gflops/Watts

Joules

KNL 7250 68 cores, data on DDR4 (flat mode)
FP32 solver sgesv
FP64 solver dgesv
FP32 --> 64 solver dsgesv

1.7

261014881310

3.3 2.8

15 12.7 7

(b) Power and joules Consumption. Also
shown is the Performance per Watt.

Fig. 3: Performance and power measurement of the linear solvers Ax = b for the IR

method compared with the FP64 solver on KNL 7250 68 cores when data is on DDR4.

We have repeated the same experiments, but this time, the data are allocated in the
high-bandwidth memory MCDRAM. Since the MCDRAM has about 4× higher band-
width, one can expect that memory-bound operations will be around 3-4 times faster.
Note that, as described in section 4.2, the IR method consists of the LU factorization
and the iterative loop. The LU factorization is known to be a compute-intensive algo-
rithm while the IR loop consists of a sequence of matrix-vector products (e.g., dgemv)
and a linear solution (e.g., using Xtrsv), thus the memory-bound portion. This means
that one can expect that the IR loop will be faster when the data are allocated in the
MCDRAM rather than the DDR4, while the LU portion will achieve roughly same the
performance wherever the data are allocated. One can expect the dsgesv routine to pro-
vide slightly higher performance than when the data are allocated on DDR4 because the
IR iterations (usually 3 or 4 iterations) are faster. The performance and the energy effi-
ciency results are displayed in Figure 4a and Figure 4b, respectively. As expected, one

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

can observe that the MCDRAM provides no performance gain for the standard solver
dgesv, this because dgesv is compute-bound and does not benefit from the high band-
width. However, the IR solver dsgesv has shown a performance improvement of 14%,
reaching 3200 gigaFLOP/s. As indicated above, this is due to the fact that the iterations
of the IR consist of memory-bound kernels, which are sensitive to the bandwidth.

Regarding the energy efficiency, the IR technique revealed success. First, it brings
an outstanding energy gain of 45% while providing a solution to the FP64 accuracy.
This is mainly due to the fact that (1) the LU factorization using the lower FP32 preci-
sion is about 2× faster than its FP64 counterparts, meaning it consumes about half the
energy of the FP64 and (2) the IR required less than 5 iterations. Further, we remark
that both sgesv and dgesv consumed about 5% less energy. This energy reduction is
due to the DDR4 being idle, which dropped its power consumption to 7W, compared
to 25W in Figure 3b where the DDR4 was used. dsgesv will also benefit from data on
MCDRAM and will bring 5% energy economy compared to the one of Figure 3b. In
addition, since the MCDRAM provides higher bandwidth, the IR portion will be faster,
as shown in Figure 4b and thus will also offer further energy gains. Finally, the dsgesv
showed an energy improvement of 10% thanks the MCDRAM.

Matrix size
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Pe
rf

or
m

an
ce

 G
flo

p/
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600

KNL 7250 68 cores, data on MCDRAM (flat mode)
FP64 solver dgesv
FP32 --> 64 solver dsgesv

(a) Achieved performance, P = 2n3

3 meaning
higher is faster.

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 p
ow

er
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320

Performance
in Tflop/s

Joules

Gflops/Watts

KNL 7250 68 cores, data on MCDRAM (flat mode)
FP32 solver sgesv
FP32 --> 64 solver dsgesv
FP64 solver dgesv

2491
7.7

1.73.13.5

15.7 14

13401240

(b) Power and joules consumption. Also
shown is the performance per Watt.

Fig. 4: Performance and power measurement of the linear solvers Ax = b for the IR

method compared with the FP64 solver on KNL 7250 68 cores when data is on MC-
DRAM.

5.2 Study of the Power Efficiency on GPU V100

NVIDIA’s V100 PCIe GPU is the latest version of accelerator from NVIDIA with the
Volta architecture. It has 5120 CUDA cores, along with the new 640 Tensor Cores. This
new Tensor Core architecture is exclusively to accelerate GEMM-update operation in

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

mixed precision. V100 has a peak performance of 7 teraFLOP/s in double precision,
14 teraFLOP/s in single precision, and 112 teraFLOP/s on Tensor Cores. It has 16 GB
high-bandwidth memory, with a bandwidth of 900 GB/s. The interconnect bandwidth
is 32 GB/s, and maximum energy consumption of the V100 is 250W.

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0
2
4
6
8

10
12
14
16
18
20
22
24 FP16-TC->64 dhgesv

FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

Fig. 5: Performance comparison of the linear solvers Ax = b for the IR method using
three different arithmetic and compared with the FP64 solver on NVIDIA V100 GPU.

Figure 5 shows the performance obtained by the different IR solvers, as well as
the reference FP64 dgesv solver for matrices with κ∞(A) ≤ 104. All the IR variants’
iterations ranged from 3 to 10 to converge for all matrix sizes. For example, the FP32

algorithm converged with about 3 or 4 iterations while the FP16 required between 7 and
10 iterations and the FP16-TC about 5 to 7 iterations. Thus, one can expect that the low-
precision iterative refinement algorithms will bring a large speedup compared to dgesv.
Since the number of iterations is small, we envision that the speedup ratio will be similar
to the one observed in Figure 1a for the LU factorization. The FP16-TC dhgesv-TC

solver is up to 4× faster than its FP64 dgesv counterpart. Similarly, the FP16 dhgesv

and the FP32 dsgesv variants showed around 3× and 1.8× speedup over the dgesv,
respectively. These observations endorse our findings that low-precision techniques can
be used to speed up linear solvers by a large factor, and, as a consequence, one can
expect similar improvements in terms of energy consumption.

The energy efficiency results are displayed in Figure 6. We note that, here, since
the GPU implementation is hybrid (meaning it uses the CPU and the GPU), we re-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

ported in Figure 6 the sum of the CPU, DRAM, and GPU power measurement. The
standard dgesv solver provides an energy efficiency of 14 gigaFLOP/s per Watt. Using
the FP32 IR dsgesv solver helps in doubling the energy efficiency, which increased
up to 27 gigaFLOP/s per Watt. This follows our performance analysis described above,
since the dsgesv is about twice as fast and thus we can observe twice the energy ef-
ficiency using the dsgesv routine. The results become more impressive with the FP16
dhgesv, which showed more than 3× the energy efficiency of dgesv. Finally, the most
pronounced result is shown by the FP16-TC dhgesv-TC solver. It achieved an unprece-
dented energy efficiency of 74 gigaFLOP/s per Watt—that is a more than 5× improve-
ment over the standard dgesv solver. These results demonstrate that the IR methods
and half-precision arithmetic will be decisive in helping mitigate the power constraints
in large-scale HPC systems. To make this description self-contained, we would also
mention that similarly to the KNL observation, we can easily determine the portion of
the IR loop in these graphs. It is the portion with the lower power consumption (e.g.,
the portion draining 300W). We can also see that the IR portion for dsgesv is short
compared to the one for either the dhgesv and the dhgesv-TC. This is normal since, as
mentioned above, the dsgesv required about 3 or 4 iterations while both dhgesv and
dhgesv-TC required 7–10 and 5–7 iterations respectively.

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 C

PU
+G

PU
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14

2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

27

1041

16.8

48

609

24.0

74

470

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32 --> 64 solver dsgesv
FP16 --> 64 solver dhgesv
FP16 --> 64 solver dhgesv (TC)

CPU: 10 cores E5-2650 v3
GPU: Nvidia V100

Fig. 6: Power consumption of the linear solvers Ax = b for the IR method using three
different arithmetic and compared with the FP64 solver on NVIDIA V100 GPU. Also
shown is the performance per Watt.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://dx.doi.org/10.1007/978-3-319-93698-7_45

6 Conclusion

This work is a direct response to increasing concerns about power efficiency in the
HPC community. Existing works focus on dynamically tuning hardware voltage and
frequency to save energy at the cost of performance. In this work, we propose a new
approach to power efficiency and demonstrate that it is possible to increase both per-
formance and power efficiency by leveraging the knowledge of applications. For the
solution to linear systems of equations, a novel algorithm is designed and implemented.
The initial approximation of the solution is computed using power efficient and fast
reduced-precision arithmetic. This is followed by accuracy iterations to improve the ac-
curacy in a higher precision. We have shown that, by combining FP32 and FP64, we can
accelerate the execution time on Intel KNL architectures up to 2×—and reduce their
power consumption by up to half. The results on the new NVIDIA V100 PCIe GPUs
are even more promising. We have achieved 4× speedup, and more than 80% reduction
in power consumption, by exploiting the FP16 features of the V100 GPU Tensor Cores.

In the 2000s, the potential of mixed-precision iterative refinement has been inves-
tigated for performance reasons. To the best of our knowledge, this work is the first
study that demonstrates the immense potential of mixed-precision iterative refinement
for large-scale computation. In future work, we aim to extend this work to ARM and
IBM POWER architectures, and build a framework that will automatically identify the
operations to be executed in reduced precision in applications without compromising
the final accuracy.

Acknowledgments

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration. The work was also partially supported by NVIDIA and NSF grant No. OAC-
1740250.

References

1. Baboulin, M., Buttari, A., Dongarra, J., Kurzak, J., Langou, J., Langou, J., Luszczek, P.,
Tomov, S.: Accelerating scientific computations with mixed precision algorithms. Computer
Physics Communications 180(12), 2526–2533 (2009)

2. Betkaoui, B., Thomas, D.B., Luk, W.: Comparing performance and energy efficiency of FP-
GAs and GPUs for high productivity computing. In: 2010 International Conference on Field-
Programmable Technology. pp. 94–101 (Dec 2010)

3. Carson, E., Higham, N.J.: Accelerating the solution of linear systems by iterative refinement
in three precisions. MIMS EPrint 2017.24, University of Manchester (2017)

4. Carson, E., Higham, N.J.: A new analysis of iterative refinement and its application to accu-
rate solution of ill-conditioned sparse linear systems. SIAM Journal on Scientific Computing
39(6), A2834–A2856 (2017), https://doi.org/10.1137/17M1122918

5. Eastep, J., Sylvester, S., Cantalupo, C., Geltz, B., Ardanaz, F., Al-Rawi, A., Livingston,
K., Keceli, F., Maiterth, M., Jana, S.: Global Extensible Open Power Manager: A Vehi-
cle for HPC Community Collaboration on Co-Designed Energy Management Solutions, pp.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://doi.org/10.1137/17M1122918
https://dx.doi.org/10.1007/978-3-319-93698-7_45

394–412. Springer International Publishing, Cham (2017), https://doi.org/10.1007/
978-3-319-58667-0_21

6. Etinski, M., Corbalán, J., Labarta, J., Valero, M.: Understanding the future of energy-
performance trade-off via DVFS in HPC environments. Journal of Parallel and Distributed
Computing 72(4), 579–590 (2012)

7. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.W.: Powerpack: Energy profiling
and analysis of high-performance systems and applications. IEEE Transactions on Parallel
and Distributed Systems 21(5), 658–671 (2010)

8. Haidar, A., Jagode, H., YarKhan, A., Vaccaro, P., Tomov, S., Dongarra, J.: Power-aware
computing: Measurement, control, and performance analysis for Intel Xeon Phi. In: 2017
IEEE High Performance Extreme Computing Conference (HPEC). pp. 1–7 (Sept 2017)

9. Haidar, A., Tomov, S., Luszczek, P., Dongarra, J.: Magma embedded: Towards a dense linear
algebra library for energy efficient extreme computing. In: 2015 IEEE High Performance
Extreme Computing Conference (HPEC 15), (Best Paper Award). IEEE, IEEE, Waltham,
MA (09-2015 2015)

10. Haidar, A., Wu, P., Tomov, S., Dongarra, J.: Investigating Half Precision Arithmetic to Ac-
celerate Dense Linear System Solvers. In: SC16 ScalA17: 8th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems. ACM, ACM, Denver, CO (11/2017 2017)

11. Higham, N.J.: Iterative refinement enhances the stability of QR factorization methods for
solving linear equations. BIT Numerical Mathematics 31(3), 447–468 (Sep 1991), https:
//doi.org/10.1007/BF01933262

12. Jagode, H., YarKhan, A., Danalis, A., Dongarra, J.: Power management and event verifica-
tion in papi. In: Knüpfer, A., Hilbrich, T., Niethammer, C., Gracia, J., Nagel, W.E., Resch,
M.M. (eds.) Tools for High Performance Computing 2015. pp. 41–51. Springer International
Publishing, Cham (2016)

13. Kasichayanula, K., Terpstra, D., Luszczek, P., Tomov, S., Moore, S., Peterson, G.: Power
aware computing on gpus. In: SAAHPC ’12 (Best Paper Award). Argonne, IL (July 2012)

14. Kimura, H., Sato, M., Hotta, Y., Boku, T., Takahashi, D.: Empirical study on reducing energy
of parallel programs using slack reclamation by DVFS in a power-scalable high performance
cluster. In: 2006 IEEE International Conference on Cluster Computing. pp. 1–10 (Sept 2006)

15. Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A., Dongarra, J.: Exploiting the per-
formance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative
refinement for linear systems). In: SC 2006 Conference, Proceedings of the ACM/IEEE. pp.
50–50 (Nov 2006)

16. NVIDIA Management Library (NVML), NVIDIA, 2018, https://developer.nvidia.
com/nvidia-management-library-nvml

17. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch, T.:
Adagio: Making DVS practical for complex HPC applications. In: Proceedings of the 23rd
International Conference on Supercomputing. pp. 460–469. ICS ’09, ACM, New York, NY,
USA (2009), http://doi.acm.org/10.1145/1542275.1542340

18. Skeel, R.D.: Iterative Refinement Implies Numerical Stability for Gaussian Elimination.
Mathematics of Computation 35(151), 817–832 (1980)

19. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid GPU
accelerated manycore systems. Parellel Comput. Syst. Appl. 36(5-6), 232–240 (2010),
DOI: 10.1016/j.parco.2009.12.005

20. Tomov, S., Nath, R., Ltaief, H., Dongarra, J.: Dense linear algebra solvers for multicore with
GPU accelerators. In: Proc. of the IEEE IPDPS’10. pp. 1–8. Atlanta, GA (April 19-23 2010)

21. Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Prentice-Hall (1963)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_45

https://doi.org/10.1007/978-3-319-58667-0_21
https://doi.org/10.1007/978-3-319-58667-0_21
https://doi.org/10.1007/BF01933262
https://doi.org/10.1007/BF01933262
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
http://doi.acm.org/10.1145/1542275.1542340
http://dx.doi.org/10.1016/j.parco.2009.12.005
https://dx.doi.org/10.1007/978-3-319-93698-7_45

