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Abstract. Sudden surges in the incoming workload can cause adverse
consequences on the run-time performance of data-flow applications. Our
work addresses the problem of limiting CPU associated with the elastic
scaling of timely data-flow (TDF) applications running in a shared com-
puting environment while each application can possess a different quality
of service (QoS) requirement. The key argument here is that an unwise
consolidation decision to dynamically scale up/out the computing re-
sources for responding to unexpected workload changes can degrade the
performance of some (if not all) collocated applications due to their fierce
competition getting the shared resources (such as the last level cache).
The proposed solution uses a queue-based model to predict the per-
formance degradation of running data-flow applications together. The
problem of CPU cap adjustment is addressed as an optimization prob-
lem, where the aim is to reduce the quality of service violation incidents
among applications while raising the CPU utilization level of server nodes
as well as preventing the formation of bottlenecks due to the fierce com-
petition among collocated applications. The controller uses and efficient
dynamic method to find a solution at each round of the controlling epoch.
The performance evaluation is carried out by comparing the proposed
controller against an enhanced QoS-aware version of round robin strategy
which is deployed in many commercial packages. Experimental results
confirmed that the proposed solution improves QoS satisfaction by near
to 148% on average while it can reduce the latency of processing data
records for applications in the highest QoS classes by near to 19% during
workload surges.

Keywords: Shared resource interference · Distributed stream process-
ing · Scheduling and resource allocation algorithms.

1 Introduction

Timely data-flow is a recent powerful general-purpose low-level abstraction layer
to be used in developing scientific/enterprise programs that consist of large-
scale iterative computations over batch- or streaming- based data records [22].
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The growing demand for fast analysis over a high volume of unstructured data
records ([3], [16]) has led to the development of several acyclic batch processing or
streaming data processing such as MapReduce [11], CStream [26], and Microsoft
Sonora [31]. However, an important feature of emerging applications in several
domains, such as deep learning algorithms, is their need to iteratively execute
certain modules with many parallel tasks over a large amount of data elements
(either in batch or in streaming mode) until a termination condition is matched
[13].

The goal of the timely data-flow model is to bring together all three key ad-
vantages of the previous computational models, namely (i) batch computational
model, (ii) the streaming computational model, and (iii) the graph computa-
tional model, into a common paradigm, while retaining the performance of each
system. To this end, the timely data-flow model supports both stateful iterative
and incremental computations to coordinate the fine-grained synchronous and
asynchronous execution of parallel tasks. The model involves a directed cyclic
graph where its vertex set represents the computational tasks, each can send and
receive logically timestamped stateful data elements along the directed edges of
the graph. Nevertheless, the new model satisfies the three main requirements: (i)
low-latency, (ii) synchronous /asynchronous iteration, and (iii) strict consistency
of the intermediate sub-computational results, alongside each other ([12]).

On the other hand, handling the fast processing requirement over a large
volume of data in a scalable manner, taking advantage of a server farm of tens
or even hundreds of server nodes seems inevitable [14]. Two important design
objectives of such large-scale systems are to employ parallelism techniques to
attain a high scalable solution by avoiding single-node bottlenecks while the
hardware resource usage needs to be utilized in a cost effective way. To enable
better scaling at a lower cost, a service provider (SP) of such frameworks often
chooses hosting tens of thousands of users applications on the available comput-
ing resources at the same time. While the main objective of the service provider
is to maximize her revenue, an end-user (e.g., an application owner) may de-
mand fast execution time. However, Satisfying such incompatible objectives can
disappointingly lead to under/over-utilization of precious cycles of computing
resources in many practical cases.

Another critical requirement for a data-flow processing system is fulfilling the
quality of service (QoS) requested by the application owners as specified in the
service level agreement (SLA). While a dynamic resource allocation strategy
can provision a new server once the capacity of the available resources is not
enough to cope with the incoming load, there exists several practical scenarios
in which it is almost impossible to avoid QoS violations for executing all appli-
cations over the course of their execution, particularly if there are unexpected
spikes in the incoming traffic. In case of such scenarios, a QoS-aware resource
manager needs to carefully comply with the service-level objectives while maxi-
mizing the overall system performance.

This paper proposes a low-overhead feedback controller for elastic adjustment
of CPU resources in a timely data-flow platform running on a shared distributed
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environment. The key features of our solution is taking QoS enforcements and
shared-resource interference among collocated threads into account when making
resource allocation decisions. Our solution uses a prediction module to estimate
the latency of each computational module by employing a queue-based model
and estimating of the future rates for incoming data records. We benchmarked
the proposed solution against the enhanced round robin policy with respect
to two major performance metrics of response time of data records processing
(18.8% improvement), and QoS violation rates (77% overall improvement) for
the workloads that either resemble Poisson distribution for arrival or heavy-tailed
patterns (Weibull distribution).

The remainder of this paper is organized as follows. Section 3 concisely intro-
duces the background knowledge to help the reader appreciate the correspond-
ing concepts of the new paradigm. Section 4 gives insights into the proposed
controller. Section 5 summarizes the results on the experimental evaluations,
followed by some comparison to related work presented in Section 2. Finally,
Section 6 draws some final conclusions.

2 Related Work

Parallel data-flow platforms have been effectively employed in the field of big
data mining where algorithms show an iterative nature. Naiad [22] has been
designed as the first distributed system for running parallel and iterative op-
erations over either batch or streaming data-flows. In Naiad, each message has
a logical time-stamp as well as some location-generation meta-data that allows
the underlying system to figure out the right order and the associated priority
of each message. However, the thread-level elasticity is not supported by the
system.

Apache Spark [33] is a fast, in-memory data processing engine to execute iter-
ative algorithms over the streaming data-sets. It probably has the most similarity
with timely data-flow paradigm when compared to other existing frameworks.
However, the big difference between the two paradigms is that while the timely
data-flow engine maintains a set of persistent tasks that repeatedly send and
receive the data records, the Apache Spark engine starts and stops worker tasks
(by breaking the computation into lots of independent tasks) similar to most
batch processing engines do. This allows the TDF engine to support very fast
scheduling of operators in microsecond scales, as shown by [19].

Many existing resource allocation strategies, e.g., [17], [15] manage resources
based on OS level metrics, such as per core utilization, I/O capacities, and energy
usage of resources while ignore the negative performance caused by interference
at the shared resources (LLC or memory bandwidth). However, a careful study
by [30] confirmed that any resource management scheme that is unaware about
the interference of shared resources is entirely a failure. Such a mechanism is
necessary to avoid the performance degradation problem caused by consolidation
decision among collocated workloads.
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The work in [32] attempted to anticipate the micro-architecture-level in-
terference by using an offline profiling phase. Rao et al. proposed an effective
metric to predict the performance of applications running in a NUMA system
[24]. Such a metric can be leveraged to design a resource allocation that is aware
of contention among shared resources. However, obtaining such an interference
signature through profiling might not be feasible in every practical cases, as the
interference attributes of applications could change over the run-time. Authors
in [8], [7] proposed a method to reduce the negative impact of architecture-level
shared resource contention on a hyper-visor-based cloud platform. However, it
seems that these projects concern mainly with tuning resources on one server
node, while our focus is to devise a resource allocation mechanism in a cluster
of server nodes where parallelization of each data-flow application is of great
importance to the overall performance of the system.

Using a predictive-based model is not new in computing systems [21], [20].
[2], [21], [20], [23]. Most of these works proposed a multi-input, multi-output
(MIMO) resource controller that automatically adapts to dynamic changes in a
shared infrastructure. Such models try to estimate the complex relationship be-
tween the application performance and the resource allocation, and adjusts the
embedded model by measuring the clients’ response time. While there are simi-
larities between the proposed solution with previous MPC-based controllers, our
solution responds to the degraded performance level by measuring the number
of waiting messages and then applying a more accurate queuing based formula
to estimate the response time of each application.

3 Background

Designing a scalable and fault-tolerant distributed system for running parallel
programs for processing streaming data (or data-flow) has been recently receiv-
ing a lot of attention. This includes dealing with the upcoming issues in the
processing of data-flow in near real-time fashion. This section provides brief
background information about the core concepts used in this area, called timely
dataflow, which is first introduced by Microsoft researchers in 2013 [22].

3.1 Cyclic data-flow Model.

Timely data-flow proposes a new concept to embrace the three advantages of
prevalent giant models for processing large amount of data. It offers (1) high
throughput (for batch processing systems), (2) low latency (for stream process-
ing engines), and (3) the ability to perform iterative, stateful, and incremental
computations over incoming data-flow. This new model resolves the complex-
ities of combining such features under one umbrella, e.g., nesting loops inside
streaming contexts that keeps state of the computations [22].

The model supports a new form of logical timestamps attached to each data-
flow computation as an efficient, lightweight coordination mechanism for sup-
porting iterative and incremental processing. At any given time, the platform
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maintains a set of point-stamps of those message which are still in progress.
This is done to track the progress of messages processing. So, each parallel worker
knows the number of outstanding data-flow messages that are still live and needs
to be delivered for further processing. The directed data-flow graph allows the
platform to efficiently track the set of data records that might possibly flow
throughout the computational graph. Such information can be used to quickly
coordinate among all working threads to detect the possibility of additional data
records to arrive at future epochs or iterations [6].

3.2 Shared Resource Interference.

To enhance the utilization of the computational resources, a service provider
can employ the “consolidation” method to host multiple data-flow applications
submitted by different end-users into one (or more) physical node(s). Neverthe-
less, one cannot ignore the performance degradation experienced by consolidated
applications due to the fact that one application may evict the data of other
collocated applications whenever it is context switched to a CPU core. The con-
sequence is an undesirable increase in the latency of other applications to access
their own data in the main memory in the next CPU cycles.

It is well known that finding an effective consolidation solution in a shared-
memory platform is challenging [29], [27], [30], mainly because each application
has its unique resource consumption attributes while at the same time it requires
a certain amount of quality of service level to be guaranteed by the underlying
platform. Furthermore, applications can compete with each other to access the
shared micro-architecture level resources such as last level cache and/or memory
bandwidth, while the incoming traffic of data-flow to each application can vary
temporally. To the best of our knowledge, no empirical research study exists
to address the problem of the negative performance impact of shared resource
contention among collocated timely data-flow applications.

4 QoS-Aware CPU Cap Adjustment

To achieve the required performance level enforced by QoS rules, e.g., end-to-
end response time, we use a model based on queuing theory to adjust CPU caps
of each sub-component. We also employ “control theory” principles to design a
robust strategy that dynamically regulates the performance parameters of each
sub-component in response to the continuous feedback from the state of the
underlying platform. The key idea is to leave the resource allocation decision to
run-time, in which the resource controller can measure the following performance
metrics: (1) the incoming rate of each application, (2) the available capacity of
CPU capacity per host, (3) the QoS violation rate per each application, and (4)
the contention on shared resources per host.

To resist against the temporal changes in the arrival rate of each module,
we adjust the percentage of the CPU core to allocate to each working thread
according to the number of outstanding messages in the main buffer of each
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computational module which is a good approximation of the end-to-end delays
that each data-flow message may experience. We use a model predictive control
(MPC) as a mathematically well-defined mechanism (1) to predict the future
average arrival rate of messages to each data-flow, and (2) to dynamically make
CPU cap decision based on the current and the predicated future states. At
each controlling epoch the controller measures a set of performance metrics and
compares them with their desired value reflected in SLA contract. MPC-based
controller can provide a robust performance despite the modelling errors [25] is
to keep the tracking error within an acceptable range.

The proposed mechanism consists of four components of system model, es-
timator, optimizer, and anti-saturation. The system model uses a formula for
G/G/M queues to abstract the complex running time behaviour of each thread.
A G/G/M queue represents a system with M servers where both the interarrival
times of customers and the relevant service times have a general distribution.

The estimator uses a simple formula based on auto regressive integrated mov-
ing average (ARIMA) model to predict the input traffic rate of each application.
The optimizer module uses a dynamic programming method to iteratively ad-
just CPU cap of each thread by considering the performance values obtained
from the other two modules. Lastly, the anti-saturation component is used to
prevent over-utilization of CPU in each host, particularly in cases when the CPU
demand is higher than the available capacity.

4.1 QoS Guarantee Semantic.

We assume that there are exactly Q different classes of QoS contracts that
an end-user can choose from. Each QoS class 1 ≤ q ≤ Q is indicated using
a predefined pair of values, denoted by

⟨
ω∗
q ,Vq

⟩
, each reflects a fixed service

parameter. The ω∗
q value defines the maximum acceptable average processing

delay of messages belonging to an application of class q.
Vq(∆T ) reflects an acceptable upper bound for the percentage of QoS viola-

tion incidents for all applications in class q during an arbitrary interval of size
∆T . A good candidate for V is a linear rule like Vq = 1− q

Q+C , where C is a con-

stant. As a concrete example, assume a scenario that |Q| = 3, and the associated
upper bounds of each QoS class is taken from are Vq=1..3 ∈ {0.99, 0.90, 0.70},
where the first class (q = 1) has the highest priority. So, the delay of process-
ing data-flows belonging to q1 can be higher than ω∗

1 only for 1% of the entire
messages entered to the system during any arbitrary interval.

4.2 System Model.

We use Allen-Cunneen approximation of G/G/M queue [4] to estimate an upper-
bound of the average end-to-end response time experienced by each message in
the main buffer of each computational vertex. Based on this formula, the average
waiting time of customers (denoted as WM ) in any general G/G/M queue can
be approximated by the following equation:
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WM =
Pcb,M

µM(1− ρ)

(
C2

S + C2
D

2

)
, (1)

where CD = σD/ED and CS = σS/ES are the coefficients of variation for

inter-arrival time and service time, respectively. Sometimes, the term
C2

S+C2
D

2 is
referred to the stochastic variability of the queue. The term Pcb,M is the prob-
ability that all servers are busy; hence, the waiting time of a recently arrived
customer is above zero. For a queuing system with only one server (M = 1) this

parameter can be calculated as Pcb,M = ρCi , where ρCi =
λCi

µ̄Ci
is the service

traffic intensity of component Ci (i.e., its utilization). Here, λCi is the average
number of messages arriving to the main buffer of component Ci per unit of
time, and µ̄Ci is the average number of messages to be served per unit of time
by each working thread associated with component Ci. Otherwise, i.e., M ≥ 2,
one can use the following formula as suggested by [5].

Pcb,M ≈
{
(ρM + ρ)/2 if ρ ≥ 0.7

ρ
M+1

2 otherwise
, (2)

where ρCi =
λCi

Mµ̄Ci
. It is worth noting that while the A-C formula was developed

using some computational-based estimation techniques without a formal proof,
it gives a very good approximation to the average waiting time of customers in
a G/G/M queuing system. As reported by Tanner in [28], the value obtained by
the A-C formula were within 10% of their actual values in most scenarios.

At any given time, each computational module needs to identify the right
number of concurrent working threads, i.e., the parallel degree, shown by M
in (1) and (2). To make the problem tractable, we allow each computational
module to increase or decrease its parallel degree at most by one during every
controlling interval. Let Mo

(τ,Ci)
denote the parallel degree of a computational

module Ci during a given interval τ . The controller just needs to recompute
(1) and (2) for the subsequent intervals by replacing the parallel degree with
Mo

(τ,Ci)
, M+

(τ,Ci)
= Mo

(τ,Ci)
+1 and M−

(τ,Ci)
= Mo

(τ,Ci)
− 1, respectively, and then

choose the best result among them.
If a computational module resides within a loop context, the average waiting

time obtained by (1) needs to be multiplied by the average number of times that
the loop context is run over its input messages. Let v̄Ci denote the average value
of the loop variable for Ci as a computational module within a loop context.
Finding the exact value of v̄Ci is computationally expensive, as one needs to
keep track of all messages processed by each computational module. A good
estimation of the loop variable for each module perfectly works in most practical
scenarios, as the MPC-based scheme is not too sensitive to the correctness of its
input values.

To this end, we employ an estimation procedure based on a well-known Monte
Carlo sampling method, called the AA Algorithm [10]. This algorithm is a fully
polynomial randomized approximation scheme (FPRAS) that uses the minimum
possible number of measurement to estimate the value of v̄. 3
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Using the AA Algorithm, we can drive a good estimation of the total average
processing time of messages that belong to an application by summing up the
response time of a vertex (multiplied by v̄Ci if Ci resides in a loop context).

We use ARIMA model to estimate the average arrival rate of messages to
the first computational component of each data-flow application for the next
controlling intervals. Based on this model, the future value of a random vari-
able, such as λC1

κ , can be estimated using a series of previous observations [9].
The controller then can calculate the desirable amount of CPU capacity to be
assigned to each thread such that the application meets its QoS requirements.

4.3 Resource Allocation Parameters.

The optimization module operates in periodic control intervals to adjust the
CPU cap for each data-flow application. The optimization goal is accomplished
through a two-phase process. First, it determines the desirable demand of each
application for the CPU credit. Then, it computes the resource share that can
be allocated to each application based on available resource capacity, a cost-
benefit analysis, and the server nodes’ status. Upon receiving of initial desirable
CPU demands from all applications, the optimization module determines the
possibility of satisfying all demands by considering the fact that there might
not be enough resource capacities available within the entire cluster. This en-
ables all applications to meet their performance targets as specified by the QoS
requirements.

In case of resource scarcity, however, the optimization module tries to max-
imize the contribution (or the reward) that the system provider receives from
a resource allocation decision by applying a cost-benefit analysis. Each working
process has been assigned a quantum-based cap. A non-zero cap means that the
amount of CPU time to be assigned to the thread process cannot run above the
certain cap amount (even if the other processes are idle). So, a cap value of 200
means two CPU cores and 50 means half a core [1].

4.4 Optimization Module.

We define a contribution function to reflect that quantifies the value of the gains
(and losses) for all applications affected by a CPU adjustment decision. LetD∗

ai,τ

denote the CPU cap demanded by a particular application ai at any given time
τ . Let Ro

τ denote the total amount of CPU cap that the available switched-on
server nodes can provide. Further, let R+

τ , and R−
τ denote the provided CPU

cap if one server is added or removed from the current set of switched-on server
nodes, respectively.

To mitigate the negative effect of poor RA decisions on the overall revenue,
we only calculate the R+ and R− at any controlling epoch. We will allow the
controller to add or remove at most one server node from the available server
nodes at any decision interval; hence, the feedback loop can detect the negative
effect of any poor decision and let the controller stop such results.
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Let us define a contribution function for each application ai, denoted by
Cai(rai), that determines the reward that is received by the service provider if
rai CPU cap is allocated to this application as follows.

Cai(rai) = I(qai)× (rai −D∗
ai
), (3)

where qai is the QoS class that the application belongs to, and I(qai) represents
the importance weight associated with each QoS class. At any given control-
ling interval τ , we would like to maximize the total contribution of the service
provider as maxr

∑
ai∈A Cai(rai), where A denotes the set of available applica-

tions. We solve the aforementioned optimization problem with subject to the
obvious constraint of rai ≥ 0 and another constraint on the available resource
cap on three different cases (i.e., Ro, R+ and R−).∑

ai∈A

rai
= R∗

τ where R∗
τ ∈ {Ro

τ , R
+
τ , R

−
τ }. (4)

We then pick the best solution among the three cases. If we assume that
rai can be only taken from discrete values, e.g., rai ∈ {10, 20, · · · }, then solving
this problem can be done using a standard dynamic programming strategy as
follows. Let Vi(Ri) denote the value of having Ri resource cap remaining to
allocate to any application aj where j ≥ i. So, we only need to recursively solve
the following Bellman’s equation:

Vi(Ri) = max
0≤ri≤Ri

(Cai(rai) + Vi+1(Ri − rai)) . (5)

Let n = |A| denote the total number of applications. The initial step is to
solve the problem of Vn(R) = max0≤ran≤R∗ Can(ran), for all possible values of
0 ≤ R ≤ R∗

τ .
To quantify the slowdown rate caused by a consolidation action, we pursue

an effective method based on the solution initially introduced in [27], [30]. So,
the impact of workloads’ contention on both LLC and memory bandwidth can
be computed as a sudden rise in the memory bandw idth util ization, denoted
by MBW util. By measuring the two standard hardware events as an indicator
of memory reads and writes, one can compute the utilization level of memory
bandwidth [27], [30] (using perf in Linux).

5 Experimental Evaluation

We built a proof-of-concept prototype using a modular open-source implemen-
tation of timely data-flow in Rust (the source code is obtainable from [18]).
We performed a set of experiments using synthetic applications to validate the
versatility of the proposed solution under sudden changes in the arrival rate of
data-flow applications. We measure the effectiveness of the proposed solution
with respect to the following metrics: (1) the average latency experienced by
each data-flow application, and (2) the amount of QoS violations experienced
by each data-flow application.
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We compare our solution against an enhanced round robin method (ERR)
which assigns a fixed value for the number of working threads determined by the
QoS class that the application belongs to. We fixed the number of QoS classes
to three and the parallel degree values to {8, 4, 2} to be used by ERR heuristic.
The enhanced interference-aware version of this strategy averts sending extra
load to a physical machine that is marked as over-utilized.

All of the experiments reported in the following sections have been performed
in a local cluster consisting of 4 nodes (from Amazon EC2) with total 16 logical
cores. Each machine is installed with 8 GB of main memory and equipped with
a 3.40 GHz Intel i3 CPU. The controller developed in C++ uses a dedicated
node equipped with 2.3 GHz CPU with 16GB of RAM.

5.1 Attributes of Synthetic Applications.

We created |A| = {50, 100, 200} different data-flow applications where each ap-
plication has four computational modules. Each computational module runs a
CPU-intensive script (taken from RUBiS benchmark, a well-known cloud web
application that emulates the core functionality of an auction site) that its run-
ning time varies based on the type of the incoming message ranging from 100
milliseconds to 3400 milliseconds with an average of 900 milliseconds. We select
three different QoS classes in our experiments and randomly assign each appli-
cation to one of the QoS classes, where the associated upper bound of each class
is Vq=1..3 ∈ {0.99, 0.90, 0.50}.

We bind the first computational module of each application to an external
message emitter where its generation rate is a varied value taken from either
a Poisson or a Weibull distribution. The corresponding parameter in Poisson
case varies in range of λP ∈ [0.2, 1], where λP represents the average number of
messages generated per hundred milliseconds. The Weibull distribution occurs
often in applications with heavy-tailed patterns. We allow the two corresponding
parameters in Weibull case, i.e., αW as the scale and βW as the shape parameter,
to vary as αW ∈ [1.1, 4] and βW ∈ [2, 6]. The average number of incoming
data elements per hundred milliseconds in the Weibull case can be derived by
αWΓ (1+1/βW ) (Γ : Gamma function). The controller also uses a history window
of 3 past intervals prior to the current epoch.

Figure 1(a) represents the 99th percentile average response time of applica-
tions belong to the highest priority class (q1) as a function of time (controlling
epochs) when the QoS target sets to 620 ms. to achieve. Initially all applications
have the same CPU cap allocations. Compared to the static allocation strategy,
the proposed scheme can co-ordinate CPU cap adjustment based on the QoS
requirements in the run-time. It automatically adjusts the CPU cap of q1 appli-
cations to reduce their response time from 1500 ms. close to the target value (by
augments their initial CPU cap by a factor of 3.4×).

In fact, we dynamically modify the workload stress of some applications in
a way that there are not enough CPU shares to comply with the performance
targets of all applications as follows. During the first 40 control epochs (Phase
I ), there are enough CPU caps so that all applications belonging to different
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Fig. 1: (a) Improvement in average response time compared to the static alloca-
tion scheme, and (b) CPU allocation share for applications in different quality of
service classes. An unexpected burst of messages arrives to the system at 40-th
epoch (a majority of the burst messages (> 75%) belongs to the lowest QoS
class, q3).

QoS classes can meet the requested performance target. But at this time (and
continuously toward the last epoch) (Phase II ), we intentionally allow appli-
cations from different QoS classes increase their message generation rates by a
factor of 1.8×, 2.7×, and 3.6× for q1, q3, and q3 classes, respectively, in a linear
fashion from 40th epoch till 51th epoch. The generation rates remain still toward
the end of the experiment for all QoS classes.

In the second phase, the controller cannot fully satisfy all incoming demands;
hence, it runs the cost/benefit of compromising among the performance level of
different applications. So, it decides to assign more CPU shares to q1 applications;
hence, force their response time converge to the target faster than the q2 and q3
applications. As a result, it refrains from satisfying almost all (87%) and some
(33%) of the demands from q3 and q2 applications, respectively, to meet the
requested target value during the burst period, when the target is set to be 1400
ms. and 1100 ms., respectively.

The static scheme tends to equally (or based on the incoming workload of
applications) distribute CPU shares among applications which in most scenarios
can cause a performance degradation (i.e., QoS violations) for both q1 and q2
applications (> 91% and > 74% during the run-time when the target is set to
be 900 ms. and 1200 ms., respectively). Nevertheless, the issue can be amplified
(by a factor of up to 3×) due to the resource scarcity during the burst periods.

Figure 1(b) depicts the amount of CPU caps assigned by our solution to dif-
ferent applications belonging different QoS classes. It confirms that the controller
exhibits a fast convergence for adjusting CPU caps for applications of highest
QoS classes to satisfy their demands. During Phase II the controller decides to
add a new server node to the existing cluster as it recognizes that the current
computing capacity is not enough to satisfy all demands from q1 applications.
On the other hand, the static ERR scheme over-provisions CPU cap for q3 ap-
plications severely diminishes achieving the performance target for both q1 and
q2 applications (> 91% and > 77% on average, respectively).
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Application’s
QoS class

Poisson (θ) Weibull (α, β) Avg.

1 0.2 (1.1, 4) (4, 6)

q1 14.2 18.1 13.6 29.3 18.8
q2 6.8 12.3 9.0 21.7 12.45
q3 1.1 -1.9 1.2 -6.5 -1.5

Average 7.3 9.5 8.0 14.8 9.9

(a)

Application’s
QoS class

Poisson (θ) Weibull (α, β) Avg.

1 0.2 (1.1, 4) (4, 6)

q1 89 96 178 227 147.5
q2 75 80 103 98 89
q3 14 3 -7 -28 -4.5

Average 59 60 91 99 77

(b)

Table 1: Improvement in (a) average latency [%] of processing of data records,
and (b) average reduction in QoS violation incidents [%] (during Phase II)
achieved by the proposed solution compared to ERR in different scenarios.

Table 1(a) lists the improvement in average processing time per data records
experienced by each application grouped by the corresponding QoS class. The
total number of data-flow applications in this scenario is fixed to 200. Modifying
the arrival distribution of data records affects the performance of the proposed
approach in reducing the overall average processing time of applications with
highest QoS requirements (i.e., q1 and q2). Particularly, such an improvement
is more significant in the Weibull distribution of incoming traffic (which can be
considered as a heavy-tailed workload) by an average of 21.5% (max 29.3%).

Table 1(b) lists the amount of reduction in the QoS violation incidents ex-
perienced by applications in different QoS classes that is achieved by applying
our solution compared to the outcome of the enhanced round robin scheme in
different scenarios. Our solution can reduce the QoS violation incidents on aver-
age by near 78% (maximum 227%) compared to the ERR heuristic that uses all
available computing resources. Particularly, the improvement in reducing QoS
violation of applications in highest QoS classes is more significant when the
incoming traffic follows a heavy-tailed (Weibull) pattern. The average of such
improvement in such cases is 203%.

6 Conclusions

Designing a well-utilized CPU cap adjustment strategy for timely data-flow plat-
form requires understanding the dynamic functioning of computational mod-
ules in a shared platform. Timely data-flow is a powerful and general-purpose
programming abstraction for creating iterative and streaming computational
components that no other existing system (such as streaming/batch process-
ing engines) supports. While the timely data-flow programming model supports
thread-level parallelism as form of thread communication via ordered messages
at scale, it is an absolute requirement to design an elastic CPU cap adjustment
algorithm that continually monitors the related performance metrics of the un-
derlying system to assign the right amount of CPU capacity to applications that
might request different QoS level. In a shared distributed environment, such non-
cooperative applications fiercely compete for obtaining shared resources (such
as last level cache) at the cost of performance degradation of each other.
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An uncontrolled resource allocation discipline along with the uncoordinated
execution of each computational component can severely damage the overall QoS
fulfillment, by not hitting the performance target. In this paper, we presented
a low-overhead feedback-driven resource allocation mechanism that dynamically
adapts computational resources for co-running timely data-flow applications in
a shared cluster. It consists of a model predictive based controller that adjust
the resource share of each application by solving an optimization problem using
a dynamic programming method to fulfil application’s SLO. The effectiveness of
the proposed solution has demonstrated an average improvement of performance
in terms of latency of processing data records for applications in high QoS classes
by 21% in average compared to the enhanced round robin policy.

Future work. We realized that the proposed controller has a certain upper
bound on achieving its performance when running on a local cluster, particularly
when a majority of computing modules suddenly receives a huge traffic. In such
cases, the proposed controller needs to be equipped with a migration technique
to launch more threads to stop further QoS violation. The next step can be a
comprehensive study for comparing the effectiveness of the proposed method
with some advanced sophisticated scheduling algorithms.
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