GPU-based implementation of Ptycho-ADMM for high
performance X-ray imaging

Pablo Enfedaque!, Huibin Chang!+2, Hari Krishnan!, and Stefano Marchesini!

! Computational Research Division, Lawrence Berkeley National Laboratory
2 School of Math. Sci., Tianjin Normal University
pablo.enfedaque@gmail.com

Abstract. X-ray imaging allows biologists to retrieve the atomic arrangement
of proteins and doctors the capability to view broken bones in full detail. In this
context, ptychography has risen as a reference imaging technique. It provides
resolutions of one billionth of a meter, macroscopic field of view, or the capa-
bility to retrieve chemical or magnetic contrast, among other features. The goal
is to reconstruct a 2D visualization of a sample from a collection of diffraction
patterns generated from the interaction of a light source with the sample. The
data collected is typically two orders of magnitude bigger than the final image
reconstructed, so high performance solutions are normally desired. One of the
latest advances in ptychography imaging is the development of Ptycho-ADMM,
a new ptychography reconstruction algorithm based on the Alternating Direction
Method of Multipliers (ADMM). Ptycho-ADMM provides faster convergence
speed and better quality reconstructions, all while being more resilient to noise
in comparison with state-of-the-art methods. The downside of Ptycho-ADMM is
that it requires additional computation and a larger memory footprint compared
to simpler solutions. In this paper we tackle the computational requirements of
Ptycho-ADMM, and design the first high performance multi-GPU solution of the
method. We analyze and exploit the parallelism of Ptycho-ADMM to make use
of multiple GPU devices. The proposed implementation achieves reconstruction
times comparable to other GPU-accelerated high performance solutions, while
providing the enhanced reconstruction quality of the Ptycho-ADMM method.

1 Introduction

Ptychography provides the unprecedented capability of imaging macroscopic spec-
imens at nanometer wavelength resolutions while retrieving chemical, magnetic or
atomic information. It was proposed in 1969 with the aim of improving the resolu-
tion of x-ray and electron microscopy. Since then, it has been successfully employed
in a large array of applications, and shown to be a remarkably robust technique for
the characterization of nano materials. For this reason, it is currently used in scientific
fields as diverse as condensed matter physics [1], cell biology [2], materials science [3]
and electronics [4], among others. Ptychography is based on recording the distribution
of the scattering pattern produced by the interaction of an illumination with a sample.
In a ptychographic experiment, only the signal intensities are measured, so one has to
retrieve the corresponding phases to be able to reconstruct an image of the sample. It
falls under the category of phase retrieval problems [5]. In the case of ptychography,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

Experiment

autput image
iterative solver ; __.*_:1

stack of frames > (') - m‘ﬁ

w A
(%7, y1). (x2, y2) ... ,,k

geometries

Fig. 1: Overview of a ptychography experiment. An illumination source consecutively
scans regions of the sample to produce a stack of phase-less intensities. The stack and
the geometry of the measurements are fed to an iterative solver that retrieves the phases
and reconstructs an image of the original sample.

the phases can usually be recovered by exploiting the redundancy inherent in obtaining
diffraction patterns from overlapping regions of the sample.

From an algorithmic point of view, ptychography reconstruction can be briefly ex-
plained as follows (Fig. 1). The input is a stack of multiple frames containing phase-less
measured intensities. Each frame corresponds to a snapshot of the light source through
a specific region of the sample. These regions are known for each frame, and they
are referred to as the geometry of the measurements. Using the stack of frames and
their geometries, a non-linear iterative solver repeatedly approximates the phases of the
measurements using two constraints: (1) the match between overlapping regions of the
frames and (2) the match with a given model for the data. After the solver reaches an
exit condition, the output is the overlap of the stack of frames (now with phases) in their
corresponding geometries. This overlap corresponds to the 2D reconstructed image of
the sample.

Computationally, ptychography poses multiple challenges. The primary challenge
is that the stack of measured frames is typically two orders of magnitude bigger than
the final reconstructed image. A real case example: a 700x700 pixels image of a cluster
of iron particles is recovered from a stack of 900 frames, each one containing 256x256
samples (1:125 output/input ratio). It is also common that the reconstruction algorithms
employ additional copies of the measured frames (or additional auxiliary structures of
the same size). On the bright side, the algorithms employed in ptychography reconstruc-
tion commonly use highly fine-grained parallel operations with few dependencies. This
inherent parallelism is usually exploited to achieve reasonable reconstruction times,
frequently employing many-core accelerators, such as GPUs [6].

An essential consideration in ptychography algorithms resides in the data models
and solver employed. Choosing the proper ones is far from trivial. In a real scenario,
models for the illumination source or the background of the measurements are also

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

usually considered. The models and solver employed determine the robustness of the
reconstruction (regarding noise or experimental uncertainties), the convergence speed,
and the image quality. One of the latest advances in ptychography reconstruction has
been recently developed by the CAMERA team at the Lawrence Berkeley National
Laboratory (LBNL). The research proposes a new model for data fitting and a new al-
gorithm based on the Alternating Direction Method of Multipliers (ADMM) [7]. The
proposed method, referred to from now on as Ptycho-ADMM [8], has been mathemat-
ically proven to converge faster than state-of-the-art algorithms, while producing bet-
ter quality images, and to be more resilient to noise. Ptycho-ADMM benefits come at
the expense of increased computational requirements. Besides the input stack, Ptycho-
ADMM needs to keep in memory the solution stack and an additional multiplier of the
same size, thus handling three times the amount of measured data. The multiplier needs
to be updated in each solver step, and it is employed in the optimization of all models,
so additional computation is also required.

In this paper we tackle the computational constraints of Pytcho-ADMM and design
the first high performance implementation of the method. Ptycho-ADMM parallelism
is analyzed to develop a CUDA-based multi-GPU solution that can efficiently make use
of multiple GPU devices to achieve state-of-the-art reconstruction times. The perfor-
mance of the proposed implementation is compared with SHARP [6], a high perfor-
mance GPU-based ptychography solution. Although the number of arithmetic opera-
tions and memory footprint of Ptycho-ADMM is higher than that of solvers employed
in SHARP, our implementation is able to achieve comparable reconstruction times, in
addition to providing the robustness inherent to the Ptycho-ADMM models. The pro-
posed Pytcho-ADMM implementation is already being used in the microscopes in-
stalled in the Advanced Light Source in the LBNL, and the code will be soon available
in the Department of Energy online repository system [9].

This paper is structured as follows. Section 2 first overviews the Ptycho-ADMM
method and its models, and later reviews the CUDA programming model and the ba-
sics of GPU computing. Section 3 presents the proposed solution with a detailed de-
scription of the techniques employed, and Section 4 assesses its performance through
experimental tests. The last section summarizes this work.

2 Background

2.1 Ptycho-ADMM overview

A ptychography experiment is usually defined as follows. A localized X-ray illumina-
tion w scans through a specimen w, while a detector collects a sequence J of phase-
less intensities a. The goal is to obtain a high resolution reconstruction of the spec-
imen v from the sequence of intensity measurements. In a discrete setting, u € C"
is a 2D image with \/n X /n pixels, w € C™ is a localized 2D illumination with
Vi x /m pixels, and a3 = |F(w o Sju)|® is a stack of phase-less measurements
aj € RT V0 < j < J — 1. The operator | - | represents the element-wise absolute value
of a vector, o denotes the element-wise multiplication, and F denotes the normalized 2-
dimensional discrete Fourier transform. Each S; € R™*" is a binary matrix that crops
aregion j of size m from the image u.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

In practice, as the illumination is almost never completely known, one has to solve

a blind ptychographic phase retrieval problem [10], as follows:
To find w € C™andu € C", s.t. |A(w,u)|* = a?, (1)
where bilinear operators A : C™ x C" — C™ and A; : C™ x C* — C™ V0 < j <

J — 1, are denoted as follows:

A(w, u) ZZ(.A(Z;((U, u), A?("‘% w), - >A§—1(w= u))T’
Aj(w, u) :=F(w o Sju),
anda := (af,af, - ,a%_)T e RT.

Instead of directly solving the quadratic multidimensional systems in (1), Ptycho-
ADMM is based on the following nonlinear least squares model:

min _ 1||[A(w, u)| — a||2. 2)

weCm,ueCn

A mapping B(-,-) : R x R — R, is used to measure the distance between the
recovered intensity g € R" and the collected intensity f € R’ as

B(g, f) = Iva—VfI* 3)

Based on the the above mapping 5(-,), a general nonlinear optimization model for
blind ptychography similar to (2) can be rewritten as follows:

Model: min G(A(w,u)), 4)
weC™ ueCr
with G(2) := B(|z|?,]a|?). The support or amplitude constraints of the illumination

and image [6, 11] can also be incorporated into (4).
To solve (4), Ptycho-ADMM employs an auxiliary variable z = A(w,u) € C™,
such that an equivalent form of (4) is formulated as below:

min G(z), s.t. z— A(w,u) =0. 5)

w,u,z

The corresponding augmented Lagrangian reads:
Vp(w,u,2,4) = G(2) + R((z — Aw,u), 4)) + 5]z = Aw,w)|?, (©)

with multiplier A € C™, a positive parameter /3, {-, -) representing the L? inner product
in complex Euclidean space, and $(-) denoting the real part of a complex number. Con-
sequently, instead of minimizing (4) directly, one seeks a saddle point of the following
problem:
max ur)n;rﬁlz Ts(w,u, z, A). @)
Ptycho-ADMM proposes the following update steps to solve the problem in (7),
which summarize the method:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

e _ S5 (S @y 0) ©
RS SR o T N

et SN0 x FEE

: ©)

¥ 1(S5uk) (1)
R “(t)%m;(t)' « sign(=(1)), (10)
AR = AR 4 B — AWM W), (1

. . . . A~ k
given an iteration £ and with Bk =2k + %

2.2 CUDA and GPU computing

GPUs are massive parallel devices composed by multiple SIMD units called stream-
ing multiprocessors (SM). Modern GPUs have up to several dozens of SMs, and each
SM can execute multiple 32-wide SIMD instructions simultaneously. The CUDA pro-
gramming model defines a computation hierarchy formed by threads, warps, and thread
blocks. A CUDA thread represents a single lane of a SIMD instruction. Warps are sets
of 32 threads that advance their execution in a lockstep synchronous way. Commonly,
all threads in a warp are executed simultaneously as a single SIMD operation. Control
flow divergence among the threads of the same warp results in the sequential execution
of the divergent paths, so it is commonly avoided. Thread blocks group several warps
that are executed independently but that can cooperate using synchronization operations
to share data. The unit of work sent from the CPU (host) to the GPU (device) is called
kernel. The host can launch multiple kernels for parallel execution in one or multiple
GPUs, where each kernel is composed of tens to millions of thread blocks.

The GPU memory is organized in three logical spaces: global, shared, and regis-
ters. The global memory is typically allocated in the device main memory, and it is
visible to all threads in a kernel. The shared memory is only accessible by warps in
the same thread block, while the registers are local to each thread. The communication
between the threads in a thread block is commonly carried out via the shared memory.
The occupancy of the GPU (or of a SM) is the percentage of allocated threads relative
to the theoretical maximum. It is constrained by the amount of shared memory and reg-
isters assigned per thread. The registers have the highest bandwidth and lowest latency,
whereas the shared memory bandwidth is lower than that of the registers. The shared
memory provides flexible accesses, while the accesses to the global memory must be
coalesced to achieve higher efficiency. A coalesced access occurs when consecutive
threads of a warp access consecutive memory positions.

3 Proposed implementation

The main operations involved in the models of Ptycho-ADMM are point-wise parallel,
either across the stack of frames, the reconstructed image or a single frame. In this

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

Algorithm 1 Ptycho-ADMM

Parameters: framesy[z,y, z], coord[z], itermas, tolerance

1: allocate imageli, j|, illumination|z,y],
framess[z,y, z], multiplier[z,y, 2]

2: framess = framesm

3: multiplier =0

4: for k =0 to itermaz — 1 do

5: framess = ForwardFT(framess)

6: framess = UpdateFrames(framess, framesm)
7: framess = InverseFT(framess)

8: framess = framess + multiplier

SumAll(framess x Split(image)™)
SumAll(Split(|image|?))

Overlap(framess X illumination™)

2

illumination =

10: tmage =

Overlap(|illumination|?, coord)

11: residual = ComputeResidual(framess, framesy)

12: if residual < tolerance then break

13: multiplier = multiplier — (illumination x Split(image, coord)) + framess
14: framess = (illumination x Split(image, coord)) — multiplier

15: end for

16: return image , illumination

section we will present and discuss a GPU-based implementation of Ptycho-ADMM
that exploits such parallelism.

The overview of the proposed solution is presented in Algorithm 1. The inputs
are the measured frames (frames,,|x,y,z]) , the coordinates of the measurements
(coord]|z]), the solver maximum iterations (iter,,q,) and a given tolerance. The out-
puts are the final imageli, j| and illumination|x,y] after the solver reaches an
exit condition. The framesg|x,y, z] stores the partial-solution frames, whereas the
multiplier(z,y, z] corresponds to the additional variable required in ADMM. The
image, illumination, framess and multiplier store complex numbers that repre-
sent pairs of intensity and phase values (stored as float2). The input frames,, store
the original phase-less values (float), whereas coord stores pairs of x, y coordinates
(int2).

The main operations of the proposed solution are highlighted in bold. Split cor-
responds to the operator S;, which defines a j subsection of a 2D image, whereas
Owerlap is the transposed operator ST, which merges all subsections back into an
image. Sum All performs an addition across the third dimension of a 3D volume, as
follows:

forall(z) { forall(y) { forall(z){
output|x,y] = output[z,y| + input[z,y,z] }}}

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

ForwardFT and InverseFT perform z 2D Fast Fourier Transforms (FFT) over
a 3D input, where z is the third dimension of the input. U pdate F'rames computes
the update step in eq. (10), and Compute Residual calculates the residual between
the measured and solution frames. Operators +, —, * and | - | correspond to point-
wise addition, subtraction, complex conjugate and complex norm, respectively. The
operator X denotes a point-wise multiplication when both operands are of the same
size, or multiple 2D point-wise multiplications when a 2D plane is multiplied with a
3D volume, as follows:

forall(z) { forall(y) { forall(z) {
output|x,y, z] = inputlfz,y] X input2[z,y,z] }}}

The most computational demanding operations correspond to Overlap, Split and
Update Frames. In all three functions, the arithmetic intensity1 is low, so the key
performance considerations are the thread-to-data mapping, the device occupancy and
the GPU main memory transfers. The ultimate goal is to maximize main memory band-
width while re-using as much local data as possible. To this end, improving the device
occupancy leads to more active threads, while an optimal thread-to-data mapping allows
for higher data locality and coalesced accesses, both strategies leading to (potentially)
higher main memory bandwidth utilization.

The proposed Split kernel implementation maps all CUDA threads over the output
stack of frames. A single thread block is mapped to a frame so that memory is always
read and written in a coalesced way. Contrary to Split, the Overlap function presents
inherent data dependencies: values from different frames can overlap on the same im-
age position. To handle such dependencies, threads are mapped over the input stack
and written into the image via atomic additions over main memory. Atomic operations
risk serializing multiple high latency operations when concurrency is high, penalizing
performance even in latest CUDA architectures. In our scenario, atomic operations pro-
vide the best performance compared to more elaborated solutions. This is because the
arithmetic load of the Overlap kernel is low, and the latency of the atomic operations
can be easily hidden by the main memory transfers.

Data sharing is not required across the solution's main operations. This permits
avoiding shared memory to use only register allocation instead, improving in this way
the latency of local accesses and the overall occupancy [12]. The thread block size em-
ployed is typically 128, which permits optimal theoretical occupancy in current GPU
architectures. The mapping of CUDA threads to data employed always guarantees co-
alesced main memory access, normally using strides of wide equal to the thread block
size. To further reduce GPU main memory transfers, some lesser operations are fused
into the main CUDA kernels. For instance, basic point-wise arithmetic operations, the
illumination multiply or residual computations are usually computed with the nearest
Overlap or Split kernel calls. Several kernel fusions implemented in the code are
not reflected in Algorithm 1 for illustrative purposes.

Forward and Inverse 2D FFTs represent a significant amount of the pipeline arith-
metic computation. FFT GPU implementations have been extensively studied, being

! Ratio of number of arithmetic operations computed per memory access.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

the cufft library one of the most competitive solutions performance-wise. In the pro-
posed implementation, we employ the cufft library to compute ForwardFT and
InverseFT. To further maximize performance, multiple 2D FFTs are batched to-
gether, which permits the library to fusion kernel calls and maximize data re-using.

The above explanation omits multiple minor steps across the whole solving process.
Different stabilizers, regularizers, penalization factors, etc. are introduced in some of
the models to maximize converge speed and stability. Many of the minor computation
steps are implemented using the Thrust library in order to maintain pipeline flexibility
and clean interfaces. This necessary tradeoff slightly hinders performance, considering
that the ideal case is to fuse all minor computation steps with surrounding kernel calls.

3.1 Multi-GPU solution

The above algorithm and discussion focus on a single GPU implementation. We extend
the Algorithm 1 to support multi-GPU execution. The proposed solution employs the
NVIDIA Collective Communications Library (NCCL) to implement inter-GPU com-
munication. The partition scheme employed breaks down the workload by means of
dividing the different copies of the stack of frames. This way, the frames,[z,y, 2],
framess[x,y, z] and multiplier|x,y, z] are divided across the z dimension based on
the number of GPUs employed.

Almost all operations computed in Algorithm 1 present no dependencies across dif-
ferent frames when processing the 3D stacks. The exceptions are the operations carried
out in lines 9, 10 and 11 of Algorithm 1. Sum All performs an addition over the z
dimension of a 3D volume, whereas Overlap requires all frames to add their values
into the result image. ComputeResidual also have to consider the residuals gen-
erated from all independent executions. All three dependencies can be solved in the
following way: (1) compute the local partial result, (2) reduce across all partial results
(3) broadcast the reduced output to all independent processes. The reduce operation
is an addition in all three cases. Step (2) and (3) are implemented using the directive
necl All Reduce(), which performs both the reduced addition and the broadcast. Step
(1) is implemented in the same way as in the single-GPU execution, but taking sub-sets
of frames instead of the whole stacks.

The proposed partition scheme permits a very efficient handling of the data depen-
dencies. Communication is limited to 2D reductions when computing Overlap and
SumAll, and it is only a scalar reduction when calculating ComputeResidual.
The amount of communication is in this way comparatively small, with respect to the
3D volumes processed locally. To further reduce communication, we propose an addi-
tional optimization: communication can be configured to occur every solver iteration
(default) or every n iterations. When n > 1, the iterations with no communication em-
ploy previous iteration results as non-local data. This can slightly reduce convergence
speed, in exchange of increased performance (see next section). During iterations with
no communication, the solver can be executed entirely in parallel across all GPUs. The
option to enable periodic communication is provided via a command line parameter.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

| Split Overlap

11% 37%

UpdateFrames ForwardFT

M InverseFT llluminationMultiply

8% B UpdatelllumNumerator B UpdatelllumDenominator

Other

8%

8% 9
’ 5% O%

Fig.2: Percentage of computational time of the main Ptycho-ADMM CUDA kernels
when executed on a single GK210B GPU. The input data is a stack of 1600 256256
frames. Similar results hold for other input sizes.

4 Experimental results

The results presented in this section are executed in a dual socket workstation with two
Intel Xeon E5-2683 v4, with a clock frequency of 2.10 GHz and 16 cores each. The
workstation is equipped with 4 dual-slot Tesla K80 GPUs, for a total of 8 GK210B
devices. Each device has 2496 CUDA cores. The implementations are compiled with
gcc 5.4.0 and nvee 8.0. The profiling results have been obtained with both Nvidia visual
and inline profilers, nvvp and nvprof, respectively. All performance results consider the
full pipeline execution time, including loading the experimental data, GPU runtime ini-
tialization, memory allocation and transfers, and writing back the reconstructed image.
The dataset employed corresponds to an experiment performed in the ALS during 2015
that measured a cluster of iron catalyst particles. We have selected different size slices
of said experiment to analyze the performance of the proposed implementation with
different input sizes. Experimental results presented below hold for other datasets and
simulations tested. To simplify the computational analysis, all experiments presented in
this section always run 100 solver iterations.

The proposed Ptycho-ADMM implementation achieves a GPU compute utilization
of 88%, on average, when executed with significant input sizes (around 100 million
input samples). Fig. 2 reports the percentage of computational time of the main Ptycho-
ADMM CUDA kernels. UpdatelllumNumerator and UpdatelllumDenominator com-
pute the numerator and denominator of line 9 Algorithm 1, whereas IlluminationMulti-
ply computes the multiplication of an illumination with a stack of frames. Other refers
to the rest of kernel calls, which have a computational share of less than 5%. A single
solver iteration executes a total of 64 CUDA kernels, 42 of which employ less than 0.5%
of the total computational time. Out of the kernels with more than 4% of computational

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

12

£
c
S 10
(]
"
i
= 8
S
©
o E—
5 ° z *
E
o 4 —&— 1 GPU
(8]
= —t— 2 GPU
S
.§ 2 4 GPU
3] —te— 8 GPU
[a

0

0 50 100 150 200 250

Input Samples (millions)

Fig. 3: Performance of the proposed Ptycho-ADMM implementation when executed
using 1, 2, 4 and 8 GPUs. Multi-GPU executions communicate every single iteration.

time, the theoretical occupancy is 100%, whereas the achieved experimental occupancy
is 96%, on average.

The following experiment assesses the performance and scalability of the proposed
Ptycho-ADMM solution for both single- and multi-GPU execution. Fig. 3 shows the
performance of the proposed implementation when executed using 1, 2, 4 and 8 GPU
nodes?. This experiment employs 6 different input sizes. The vertical axis measures
performance in millions of input samples divided by total execution time (the higher
the better). The horizontal axis corresponds to millions of input samples. The multi-
GPU executions presented in Fig. 3 perform communication every iteration.

A horizontal performance line in Fig. 3 represents linear scaling, meaning that the
execution time increases proportionally to the input size. Each one of the experiments
reported in Fig. 3 presents better-than-linear scaling. This is because the data sizes
employed are not big enough to saturate multiple high-end GPU devices, specially with
the smaller input sizes. The proposed implementation begins to saturate a single GPU at
around 60 millions input samples, although the performance keeps slightly increasing
for larger experiments. This proportion holds when executing the solution on 2 GPUs,
with a close-to-saturation point at about 200 million input samples. With 4 and 8 GPUs,
we can extrapolate the saturation point to be around 400 and 800 million samples. This
suggests that, when executed on similar size GPUs, bigger data sets could still benefit
from additional multi-GPU performance.

With significant input sizes, multi-GPU executions are 1.7, 2.1 and 1.8 times faster
than a single GPU, using 2, 4 and 8§ GPUs, respectively. A significant consideration

% The experiment with a single GPU and more than 200 million input samples is not reported
because it does not fit into the device main memory.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

12

10

Performance (million samples/ second)
(2}

0 50 100 150 200 250
Input Samples (millions)

Fig.4: Performance of the proposed Ptycho-ADMM implementation when executed
using 1, 2, 4 and 8 GPUs. Multi-GPU executions communicate every 8 iterations.

in multi-GPU performance resides on the communication frequency employed. The
above results can be improved up to a 55% by means of reducing the communication
frequency. The tradeoff between communication frequency and solution convergence
is maximized when communicating every 8 iterations, on average. When enough it-
erations are executed, this communication frequency has close-to-no impact on the
convergence speed, and significantly accelerates the multi-GPU performance. Fig. 4
presents the same experiment as before, but communicating every 8 iterations. In this
experiment the performance of multi-GPU implementations is increased on a 40%, on
average, achieving speedups of 2.3, 2.9 and 2.6 respect single GPU, for execution with
2, 4 and 8 GPUs, respectively.

The last test compares the performance of the proposed Ptycho-ADMM implemen-
tation with that of SHARP, a GPU-accelerated ptychography solution. SHARP em-
ploys the RAAR algorithm [13], a less computational intensive algorithm than Ptycho-
ADMM, finely tuned for ptychography reconstruction. The results of the experiment
are depicted in Fig. 5, using the same datasets as previous experiments, and executed
on a single GPU. The vertical axis represents performance, in millions of input sam-
ples divided by execution time (seconds), and the horizontal axis are input samples (in
millions). On average, RAAR is 10% faster than the proposed Ptycho-ADMM solution.
Besides being extensively optimized for GPU computing, RAAR employs one less ad-
ditional variable (of the same size of the input stack) and requires one less update step
compared to Ptycho-ADMM. On the other hand, the RAAR algorithm does not provide
any mathematical convergence guarantee and does not expose the robustness to noise
and features proposed by Ptycho-ADMM.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

B SHARP

N I I I
0 . I
7 26 59 105 164

Input Samples (millions)

Performance (million samples/ second)
= N N w w B

iy

Fig. 5: Performance of the proposed Ptycho-ADMM implementation compared to that
of SHARP, both executed on a single GK210B GPU. Different input sizes are em-
ployed, ranging from 100 256256 frames to 2500 256256 frames. Similar results
are obtained with other datasets.

5 Conclusions

This paper presents the first high performance multi-GPU implementation of Ptycho-
ADMM. The solution is designed to efficiently exploit the inherent parallelism of the
ptychography basic operations. The experimental results show how the implementation
is able to saturate multiple high-end GPU devices and to properly scale with the increase
of input data size. The ever improving brightness of accelerator based x-ray sources
enables novel discoveries by means of providing faster frame rates, larger fields of view
and higher resolutions. In this context of continuous increase of input data, scalable
reconstruction times and robust solvers that guarantee convergence on a reasonable
amount of iterations are highly valuable.

The main future work lines are related to implement a dynamic data feed system that
does not require all the data to be allocated (and processed) at the same time. Employing
CUDA unified memory could help achieving this goal by means of oversubscribing the
GPU main memory. Additional tests with larger datasets (synthetic or real) will also be

considered, together with execution on larger scale distributed memory systems using
MPI.

Acknowledgment

This work was partially funded by the Center for Applied Mathematics for Energy
Research Applications, a joint ASCR- BES funded project within the Office of Science,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

US Department of Energy, under contract number DOE-DE-AC03-76SF00098, and by
the Advanced Light Source, which is a DOE Office of Science User Facility under
contract no. DE-AC02-05CH11231.

References

1.

10.

11.

12.

13.

X. Shi, P. Fischer, V. Neu, D. Elefant, J. Lee, D. Shapiro, M. Farmand, T. Tyliszczak, H.-W.
Shiu, S. Marchesini et al., “Soft x-ray ptychography studies of nanoscale magnetic and struc-
tural correlations in thin smcoS5 films,” Applied Physics Letters, vol. 108, no. 9, p. 094103,
2016.

. K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf,

F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffrac-
tion microscopy,” Proceedings of the National Academy of Sciences, vol. 107, no. 2, pp.
529-534, 2010.

. D. A. Shapiro, Y.-S. Yu, T. Tyliszczak, J. Cabana, R. Celestre, W. Chao, K. Kaznatcheev,

A.D. Kilcoyne, F. Maia, S. Marchesini et al., “Chemical composition mapping with nanome-
tre resolution by soft x-ray microscopy,” Nature Photonics, vol. 8, no. 10, pp. 765-769, 2014.

. M. Holler, M. Guizar-Sicairos, E. H. Tsai, R. Dinapoli, E. Miiller, O. Bunk, J. Raabe, and

G. Aeppli, “High-resolution non-destructive three-dimensional imaging of integrated cir-
cuits,” Nature, vol. 543, no. 7645, pp. 402-406, 2017.

. S. Marchesini, “Invited article: A unified evaluation of iterative projection algorithms for

phase retrieval,” Review of scientific instruments, vol. 78, no. 1, p. 011301, 2007.

. S. Marchesini, H. Krishnan, B. J. Daurer, D. A. Shapiro, T. Perciano, J. A. Sethian, and F. R.

Maia, “Sharp: a distributed gpu-based ptychographic solver,” Journal of Applied Crystallog-
raphy, vol. 49, no. 4, 2016.

. R. Glowinski and P. L. Tallec, Augmented Lagrangian and operator-splitting methods in

nonlinear mechanics. Philadelphia, PA: SIAM Studies in Applied Mathematics, Society
for Industrial and Applied Mathematics (SIAM), 1989.

. H. Chang and S. Marchesini, “Blind ptychographic phase retrieval by globally convergent

ADMM,” submitted, 2017.

. (2018, Jan.) Department of energy online repository system. [Online]. Available:

https://github.com/doecode/

P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptycho-
graphic coherent diffractive imaging,” Ultramicroscopy, vol. 109, no. 4, pp. 338-343, 2009.
R. Hesse, D. R. Luke, S. Sabach, and M. K. Tam, “Proximal heterogeneous block implicit-
explicit method and application to blind ptychographic diffraction imaging,” SIAM Journal
on Imaging Sciences, vol. 8, no. 1, pp. 426457, 2015.

P. Enfedaque, F. Auli-Llinas, and J. C. Moure, “Implementation of the DWT in a GPU
through a register-based strategy,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp.
3394-3406, Dec. 2015.

D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse
Probl., vol. 21, no. 1, pp. 37-50, 2005.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93698-7_41 |

https://dx.doi.org/10.1007/978-3-319-93698-7_41

