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Abstract Clustering algorithms are essential for many big data applica-
tions involving point-based data, e.g. user generated social media data
from platforms such as Twitter. One of the most common approaches
for clustering is DBSCAN. However, DBSCAN has numerous limitations.
The algorithm itself is based on traversing the whole dataset and identi-
fying the neighbours around each point. This approach is not suitable
when data is created and streamed in real-time however. Instead a more
dynamic approach is required. This paper presents a new approach, RT-
DBSCAN, that supports real-time clustering of data based on continuous
cluster checkpointing. This approach overcomes many of the issues of
existing clustering algorithms such as DBSCAN. The platform is real-
ised using Apache Spark running over large-scale Cloud resources and
container based technologies to support scaling. We benchmark the work
using streamed social media content (Twitter) and show the advant-
ages in performance and flexibility of RT-DBSCAN over other clustering
approaches.
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1 Introduction

Clustering is one of the major data mining methods used for knowledge discovery
[11] on big data. Density-based clustering algorithms like DBSCAN [8] are
in widespread use and numerous extensions are now available for discovering
patterns and clusters in large data sets [2,12,15]. However, neither DBSCAN
nor its extensions support real-time processing or allow to tackle streamed (high
velocity) data [16]. Rather, DBSCAN operates in a batch mode where all the data
is acquired and then processed. This feature makes it unsuitable for supporting
the ever growing data from real-time data streams.

There is a strong need for real-time cluster discovery in many diverse applic-
ation domains such as urban traffic monitoring, emergency response, network
accessing analysis. The demands for real-time clustering of big data raise several
needs and requirements for improvements and refinements of the DBSCAN al-
gorithm, including the ability to: 1) generate a series of up-to-date intermediate
result checkpoints when processing real-time (incoming) data; 2) support scalable
parallel execution capabilities to reduce the response time for generating check-
points; and 3) offer consistent performance in tackling ever growing amounts of
data.

Existing extensions of DBSCAN offer no solution to the combination of
these requirements. In this paper, we present a real-time parallel version of
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DBSCAN (RT-DBSCAN) to address the above requirements. Compared to the
original version of DBSCAN, optional parameters are added to the algorithm
for controlling the efficiency and granularity of parallel-workload division. For
clustering spatio-temporal data in time and space, a spatio-temporal distance is
applied, noting that the definition of distance in this algorithm can be adapted
to other kinds of higher dimensional data. We have implemented RT-DBSCAN
using Apache Spark Streaming. We benchmark the system using large-scale
streamed social media data (tweets) on the National Research Cloud (NeCTAR)
in Australia.

2 Related Clustering Algorithms

Extensions of DBSCAN can be classified into two types: performance optimized
DBSCAN and application optimized DBSCAN. The former aims at reducing the
execution time for data clustering [12,18], whilst the latter focuses on adapting
DBSCAN to different high-dimensional data structures required for specific
application scenarios [6,17,19].

There are many good ideas in performance-oriented extensions of DBSCAN.
l -DBSCAN [18] proposes a method to reduce the size of datasets before running
DBSCAN. It employs a graph-based hybrid clustering algorithm [3] to pre-
generate a few candidate (approximate) clusters. Only the points in those clusters
are then input into DBSCAN for final clustering. However, this two-phased
clustering method has several major limitations. Firstly, two critical parameters
are added for hybrid clustering. As the authors point out, unsuitable selection
of these parameters can lead to inconsistent clustering results. Secondly, the
pre-clustering phase is used for filtering out noise data, e.g. data outliers. If
a highly skewed dataset is input, this phase can become useless and consume
unnecessary computing resources. This extension also does not meet any of the
real-time clustering requirements, but the idea of reducing or sampling all of the
data in DBSCAN is meaningful and been incorporated into RT-DBSCAN.

MR-DBSCAN [12] proposes a parallel version of DBSCAN in a MapReduce
manner [5]. The major contribution of this extension is that it provides a method
to divide a large dataset into several partitions based on the data dimensions.
Localized DBSCANs can be applied to each partition in parallel during a map
phase. The results of each partition are then merged during a final reduce phase.
For the overall cost, a partition-division phase is added into DBSCAN. A division
method called Cost Balanced Partition is used to generate partitions with equal
workloads. This parallel extension meets the requirements of scalable execution for
handling large scale data sets and the MapReduce approach makes it suitable for
many popular big data analytic platforms like Hadoop MapReduce and Apache
Spark [10]. However, this extension does not meet all the requirements of real-time
clustering. It needs to traverse the whole dataset for parallel clustering which
means that its execution time is still dependent on the size of the dataset. Thus,
whilst MR-DBSCAN has good performance for batch-oriented data scenarios, it
is not suitable for high velocity datasets.

For those application-oriented extensions to DBSCAN, we consider two of
them which are most closely related to our approach.

Stream data is often spatio-temporal in nature and comprised of time-stamped,
geographic location information [6]. This can be, for instance, social media data,
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trajectory data, Internet of Things data. This raises a requirement for clustering
those data in time and space according to their spatio-temporal characteristics.
[2] presents a method for handling this requirement. It provides an example
for clustering spatio-temporal data according to its non-spatial, spatial and
associated temporal values. In addition, they propose a notion of density factor
for each cluster which is helpful to identify the density of clusters.

Incremental DBSCAN [7] is another extension of DBSCAN suitable for mining
in data warehouses. It supports incremental updates when clustering by inserting
new data and deleting old data. It provides controls over the size of the involved
data. Old data are excluded from clustering processes based on a time-based
threshold which can be specified by the user. This method meets the real-time
requirements of tackling ever increasing volumes of data. However, it only works
for time-based clusters. The definition of old data is a critical factor in this
algorithm. Essential information can be lost by dropping data if inappropriate
thresholds are set. Although this method is designed for daily batch-oriented
tasks, the idea of dropping old irrelevant data and inserting new data into existing
clusters is essential when designing real-time, high velocty clustering solutions.

Apart from DBSCAN, there are many other density-based clustering al-
gorithms such as OPTICS [1], DENCLUE [13] and CURD [14]. D-Stream [4] is
a density based clustering approach for handling real-time streams, but it cannot
handle data arriving in arbitrary time-stamped orders. In this paper, we present
a new DBSCAN-based clustering approach that overcomes many of the issues
and limitations related to both DBSCAN and the above mentioned systems when
dealing with high velocity, streamed data.

3 Real-time Parallel DBSCAN Clustering

Clustering algorithms like DBSCAN normally need to input the whole dataset
into a clustering process (all-in with single-out). The complexity of DBSCAN
is O(n2). A typical DBSCAN traverses the whole dataset, and identifies the
neighbors of each point. Each data element can be used/processed multiple
times (e.g. as candidates to different clusters). Although incremental-DBSCAN
supports updating of clusters by inserting new input data into existing clusters,
this algorithm does not cope with ever growing sizes of historical data due to the
data traversal demands of DBSCAN. To deal with this, incremental-DBSCAN
drops outdated data to keep a fit size of dataset.

A key challenge of real-time DBSCAN is in controlling the size of traversal
data needed to cluster ever growing data volumes. In the DBSCAN algorithm, for
each new input data, a group of potential near-by points needs to be identified for
cluster detection. For each new input point, if there is an efficient way to identify
a full set of near-by context points in the historical dataset, only this subset of
data is needed for clustering against any new input. Therefore, we can input the
data point-by-point into the cluster process and get a series of up-to-date cluster
checkpoints. If the performance of this pre-filtering method is not sensitive to
the size of dataset, then we can cluster real-time stream data on-the-fly without
being challenged by the ever growing volume of data streamed over potentially
extended time periods.

This idea forms the basis for the definition of our real-time clustering
(RT-DBSCAN) method. Specifically, for a new input point p and a group of histor-
ical clustered points cPoints, nearbyCtx(p, cPoints) is used to obtain a subset
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of cPoints which contains essential information of nearby inputs. Checkpoints
produced by RT-DBSCAN on this subset must be identical to the result of applying
normal DBSCAN on the whole dataset for each input.

3.1 Identify a Full Set of Nearby Context Points for Each Input

DBSCAN involves two key parameters: ε and minPts. The distance parameter ε
defines how close two points need to be to be considered in the same neighbour-
hood. The border parameter minPts defines how many neighbourhoods related
to a single point there should be for this to be considered as a cluster. In the
following examples, we consider a scenario where ε = 1 unit and minPts = 3
points. In Figure 1, we highlight three scenarios related to putting a new point
Pi into a set of historical clustered points. In scenario A, we consider firstly
retrieving all the historical data within 1-ε distance to Pi, to get 3 non-clustered
(noise) points. Since their distances to Pi are smaller than ε, Pi now have 3
neighbours and thus these four points form a new cluster. This seems sensible,
but it can be wrong. If there is a point Pb that is less than 1-ε away from point
Pa but more than 1- ε away from Pi, as shown in scenario A of the Figure 1, Pb

will be ignored by this procedure. Although a new cluster is identified, Pb is not
marked as a member of this cluster which it should be. This result disobeys the
assertion made in the previous definition. If we consider extending the range of
near-by-context from 1-ε to 2-ε in scenario B, 4 points are discovered including
Pb. These 5 points are grouped into the same cluster. A similar question naturally
arises. What if there is a point Pc which is less than 1-ε away from Pb and is
more than 2-ε away from Pi as shown in scenario C? This sounds like an endless
issue but it is not. Since Pa, Pb and Pc are historical processed points and minPts
= 3, a cluster must have already been identified when the last of these three
points was input in a previous iteration. In scenario C, although Pc is ignored
as a nearby context point, its cluster information is carried by Pa and Pb and
subsequently passed to Pi. With this information, Pi and two other noise points
can be absorbed into the existing cluster. This result meets the requirements of
the previous definition. In this case where minPts = 3, we find that historical
points within distance 2-ε away from the input data contain enough information
to establish connections between the input point and the existing historical noise
points and existing clusters. The minimum distance (minDis) of nearby-contexts,
which is 2ε in this case, is related to the parameter ε and minPts. minDis is
given as: minDis = (minPts − 1) × ε. In the following section, we mark this
procedure as nearbyCtx(p, cPoints) where p is the input and cPoints is the
historical dataset. If cPoints are indexed in a database, the response time of this
procedure needs to be fast and non-sensitive to the growing size of cPoints. An
incremental-DBSCAN is then applied on nearbyCtx

3.2 Convert Point-by-Point Clustering to Tick-by-Tick Clustering

Executing a single process for RT-DBSCAN by tackling the incoming data stream
point-by-point is not an efficient approach and would not meet the requirements
of real-time data intensive applications. The next challenge is to process the
incoming data in parallel. However, considering the nature of DBSCAN, it is hard
to process data streams in a fully parallel manner. The reason is that DBSCAN
and RT-DBSCAN are based on a sequential processing model, e.g. using data
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Figure 1. Illustration of getting nearby points context

in batches or micro-batches. For each input data, a group of nearby data will
be queried and involved in the calculation. It is very likely that one input point
can be used within the context of another input point. Therefore, these input
data cannot be processed without impacting one another when used in a fully
parallel manner. In addition, writing the historical datasets simultaneously can
lead to consistency issue. From this we can conclude that: 1) each input point
should know the other input data that is being processed in parallel; 2) conflicts
between the results of each parallel processor need to be solved before clusters are
used/persisted, and previous results need to be persisted into historical datasets
before tackling new (incoming) data.

To tackle these challenges for parallel processing, we convert the point-by-
point RT-DBSCAN to a (temporal) tick-by-tick RT-DBSCAN where data points
from incoming data-streams are divided into separate ticks based on their arriving
times; within each tick, data are processed and clustered in parallel; the results
of each parallel processing step (within one tick) need to be merged before being
persisted to solve any/all conflicts in data consistency, and at the end of each
tick, the result must be persisted into the historical dataset before a new tick
is started. The updated dataset at the end of each tick is a checkpoint for the
clusters. A series of checkpoints forms the growth history of clusters.

Parallel processing is applied on data of each tick. To get nearby context
points for a group of inputs in a given tick, the first task of each tick is to get
the nearby points context for input point-set (iPs) {P1, P2, . . . , Pj}. Depending
on how the historical data (cPoints) is persisted, there are different ways to
achieve this. The first option is to execute nearbyCtx multiple times for each
point and merge the returned sets. The second option is to get the nearby context
at one spot by generating a bounding box for iPs. If cPoints are stored in a
database, the second option is normally preferred since it reduces the number of
queries to the database. Firstly, a minimum bounding box is calculated to cover
every point in the iPs. Then a new bounding box is generated by extending the
previous rectangle with minDis for each border. The new bounding box is used
for establishing the nearby points context from cPoints. Compared to option 1,
the drawback of this method is that it can add unnecessary historical data into
the nearby context. These noise points are filtered out by a partitioning method
before applying Incremental-DBSCAN. The nearby context aggregates historical
points together with the iPs passed into parallel processing.

The next task is to support location-based data partitioning and parallelisation
of RT-DBSCAN. Inspired by MR-DBSCAN [12], each tick of our parallel RT-
DBSCAN is designed in a MapReduce manner. In step 1, the data space is
geographically divided into many cells. Each cell contains localised input points.
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In step 2, multiple local DBSCANs are executed on each cell in parallel. In
step 3, the results from each cell are merged to recover the border information
broken by the space division. For example, single clusters appearing in multiple
cells need to be identified for merging. This is achieved in several steps. Firstly,
a fast data division for parallel RT-DBSCAN is required. MR-DBSCAN uses
cost-balanced (CB) partitioning to divide the data points in space into cells. It
first divides the data space into equal sized small unit cells. Then, a balanced
tree is calculated for merging these unit cells into many CB cells where each
CB cell contains nearly the same number of points. This method is good at
generating balanced workloads for parallel DBSCAN, but generating a balanced
tree is computationally expensive. MR-DBSCAN is designed for processing a
large amount of data in a single batch task and its CB partition is only applied
once at the beginning of the clustering procedure. However in our RT-DBSCAN
realisation, partitions are calculated at the beginning of each tick. This approach
makes it is impossible to reuse the partitions in previous ticks since point-sets
within different ticks have different nearby point contexts. To address this, a new
partition method , Fast Clustering (FC) partitioning, is designed which is more
suited to RT-DBSCAN. As illustrated in Figure 2, the idea of this partitioning
method is to iteratively divide a 2D space into four sub-cells until a threshold is
reached (i.e. a threshold on the number of points in a cell). Then, we drop the
cells where the number of contained points is less than minPts. Finally we extend
each quad-cell by 1-ε distance on each border. One benefit of this extension is to
find overlapping areas between cells so that a merge phase can be applied at the
end of each tick. Another purpose is to get the nearby points context for each
cell since some essential contexts can be carried in dropped cells that need to be
re-used.

As shown in Figure 2, there are two kinds of thresholds used for dividing
the space. The space is iteratively divided into 4 cells until either the number of
points within the current cell is less than 6 or the minimum border of current
cell is less than 2ε.

The first condition, called maxPts, is to prevent a single cell from having
too many points to process. The value 6 for maxPts in Figure 2 is only used
for demonstration purpose. In real-case, maxPts must be greater or equal to
minPts × 2n, where n is the number of dimensions in FC partitioning. This
is to avoid over-partitioning a potential cluster. The second condition, called
minSize, is to prevent the partitioned cells from having very small sizes. If the
cell size is less than 1-ε, points that are potentially in the same cluster will likely
be divided into separate cells. Although they will be merged and sorted out in
the final merging task, this can lead to a large amount of work for merging and
thus be very inefficient. These thresholds are free to be customized depending on
the specific cases. After the space is divided into a quad-tree, certain cells are
dropped if either the number of points within the cell is less than minPts or no
new input points fall inside this cell. The propose of this dropping is to reduce the
number of parallel tasks/partitions. The first condition helps to drop blank cells

Figure 2. Illustration of the Fast Clustering Partition Method for RT-DBSCAN
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and/or cells with very limited numbers of points. It is predetermined that points
inside this cell cannot form a cluster. Hence these cells can be dropped. Some of
the dropped cells may contain points that belong to clusters in other cells. Those
points will be re-selected when other valid cells are extended by 1-ε distance. The
second condition is to overcome the flaw of nearbyCtx(iPs, cPoints) mentioned
in the previous section, where cells with only historical data can be dropped.
Similarly, those dropped essential-nearby-context to other cells with new data
will be re-selected when those cells are extended. If the input spatio-temporal
data arrives in arbitrary order, the single bounding box for nearby context could
be huge in size. Although dropping ‘blank’ cells can filter out non-necessary
historical data before starting DBSCAN, it can still generate many workload
to I/O and FC partitioning. Using multiple discrete bounding boxes can be a
solution for that case. In this paper, we only use single bounding box which is
more suitable for data that arrives in (time) sequence. After dropping blank
cells, all remaining cells (the red rectangle in Figure 2) now meet both of the
following conditions: they have more than one new input data and they have
more than one core point of a cluster (regardless of whether they are historical
or new points).

Finally, those cells are extended by 1-ε distance (the green rectangle in Figure
2). As mentioned above, the purpose of this extension is to identify overlapping
areas when merging cells and pick up lost contexts during the cell dropping process.
Figure 3 illustrates some of these scenarios. If data are in a high-dimensional
space, this method can be adjusted by dividing the space based on multiple
dimensions.

Iteratively divding a space into 4 cells is a naive version of FC partitioning
in 2D space. This version suffers from dividing flat rectangle shaped cells, i.e.,
partitioning can stop in the first iteration due to the smallest border of a flat
rectangle reaches the threshold. This problem is solved by dividing each cell into
2(n−m) sub-cells. n is the number of total dimensions and m is the number of
dimensions which their corresponding borders reach the size threshold. After this
improvement, the partitioning is driven by each dimension and its corresponding
border of the target cell.

After this FC partition method, those points in iPs∪nearbyCtx(iPs, cPoints)
are divided into two groups: aPts where each point belongs to one or multiple
cells and group dPts where each point does not belong to any cell. Only aPts
will be applied parallel and DBSCAN for each cell. This procedure is marked as
PCluster(aPts). The result of PCluster(aPts) may contain duplicated points
(i.e. points belonging to duplicate cells). This result will be union-ed with dPts
before being merged/cleaned. All points in aPts and dPts will be persisted at
the end of this tick.

Points inside each partition contain both new input and historical clustered
data. An incremental-DBSCAN approach is applied to those points for each

Figure 3. Illustration of Cell Extensions
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partition. It can generate duplicated data belonging to different clusters. Since
the final merging procedure handles this problem, duplicated points are not fixed
in the local partition. The implementation supports a customizable function for
calculating the distance between two data points in multi-dimensional spaces.
A spatio-temporal distance function is created for clustering social-media data.
This spatio-temporal distance is given in Equation 1, where Pi and Pj are vectors
representing two spatio-temporal data (e.g., Tweets). x and y in vector are values
of GPS information (e.g., longitude/latitude) and t is the time-stamp value.
This equation is based on Euclidean distance. A customized spatio-temporal
ratio s is used to convert the temporal value t into a spatio-value, so that all
spatio-temporal values (i.e., x, y, t) can have the same unit in the distance
calculation.

Pi = (xi, yi, ti), Pj = (xj , yj , tj), Dg =
√

(xi − xj)2 + (yi − yj)2,4t = |ti − tj |

Distance =
√
D2

g + (4t× s)2
(1)

After the parallel local DBSCAN finishes, the result sets (Ur) are union-ed
with dPts, i.e. Ur = PCluster(aPts) ∪ dPts.

Duplicated points can appear in Ur. For example, in Figure 3 point P is on
the overlapped area thus it exists in two partitions. After applying local DBSCAN
on each partition, one instance of P is a NOISE point and another instance
belongs to a cluster. In this final procedure, these kinds of inconsistencies are
handled by a merge function: Uq = merge(Ur). Points inside Uq are ensured to
be unique. The merging solutions are described in the following paragraphs.

If a point belongs to multiple clusters, the use of this point is key. When a
point P has duplicates: if all instances of P are NOISE then we keep one of them
and drop the others. If all non-noise instances of P belong to the same cluster A,
then we create a singleton of P , mark it as a member of cluster A and merge
its roles in cluster A using the priority order: CORE > BORDER > NOISE. If
non-noise instances belong to multiple clusters then we create a singleton of P
and merge its roles among multiple clusters using the priority order: CORE >
BORDER. If the merged role is ‘BORDER’, where a border point can belong to
multiple clusters we add clusterIds into a list and attach it to the new singleton.
If the merged role is ’CORE’ then the point is a solid joining point for multiple
clusters. All such clusters must be merged into one cluster. To do this we create a
singleton of P and mark it as ‘CORE’. We then randomly pick a cluster A from
the non-noise instances and attach it to the singleton and then identify members
in other clusters which are to be merged. Finally we change their clusterId to
cluster A. However, what if some to-be-merged cluster points are not in Ur? Data
in Ur come from iPs ∪ nearbyCtx(iPs, cPoints). There is no guaranteed that
all the cluster member are covered by this set. Figure 4 illustrates this issue.

In Figure 4, two triangle-shaped points are not merged because they are absent
in Ur. Since the clusterIds of those potential absent points are known, according to
the cluster conversion table, all points in the to-be-merged clusters can be retrieved
from cPoints. This procedure is given as: Uc = getClusterPoints(ConvTbl). A
union operation is then applied on Ur and Uc. Cluster merging is finally applied
on this combined set.

Almost all the merging code can be executed in parallel except the procedure
for building a global cluster conversion table. Each computation node needs to
report their discoveries to a centralised node for generating the global conversion
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Figure 4. Illustration of the pitfall in merging clusters

table. After the above procedures (i.e., partitioning; clustering; merging), the
output set Uq contains unique points with their up-to-date cluster information.
Finally Uq should be persisted before a next tick starts.

4 Implementation of RT-DBSCAN

The RT-DBSCAN algorithm proposed above has been implemented using Apache
Spark Streaming leveraging a platform called SMASH [9]. SMASH is a platform
for hosting and processing historical data and Spark applications. It provides a
Cloud based software infrastructure utilizing HDFS, Accumulo, GeoMesa, Spark,
Kafka and GeoServer integrated together as a platform service for analysing
spatial-temporal data. This platform was originally used for traffic data analysis.
In deploying the RT-DBSCAN on SMASH, Kafka is used as the streaming source
for feeding new data. GeoMesa over Accumulo provides a distributed geo-spatial
database. It is used for storing and querying historical data. Spark Streaming is a
framework for building streaming applications on Apache Spark. This framework
treats data streams as ticks of chunks and executes micro-batch tasks for each
tick of data. Spark itself has many other interfaces for running MapReduce
functions. These functions suit the needs of RT-DBSCAN and save a lot of work
in implementing the clustering algorithm. Twitter data (tweets) are used for the
case studies and benchmarking of the platform.

Figure 5 illustrates the procedure of realizing RT-DBSCAN using Spark nodes
and Spark Streams as the framework for tackling data stream as a series of data
chunks in ticks. At the beginning of each tick, a FC partition is applied against
incoming data chunks on a single master node. Data shuffling (i.e., sending data
to the node which holds the cell it belongs to) and local DBSCAN are then
executed in parallel on each worker node. A cluster merging table is generated
on the master node after all local DBSCANs stop. Finally result merging and
data persistence are handled in parallel on worker nodes. A new tick procedure
starts after the results of the previous tick have been persisted.

5 Benchmarking of RT-DBSCAN on Spark Stream

Our case studies and benchmarking works were realised on the federally funded
Australia-wide National eResearch Collaboration Tools and Resources (NeCTAR)
Research Cloud (https://nectar.org.au/research-cloud/). The NeCTAR Research
Cloud is based on OpenStack. NeCTAR provides almost 30,000 servers across
multiple availability zones across Australia including Melbourne, Monash, Bris-
bane, Canberra, Adelaide and Tasmania. Fifteen computation nodes (Virtual
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Figure 5. Illustration of RT-DBSCAN Procedure Using Spark Streaming.

Machines) from the Melbourne zone were used to form the core infrastructure for
the case studies on RT-DBSCAN. The specification of each node was as follows:
one master node: VCPUs @2.60GHz × 4 ; 12GB RAM; 120GB HDD; 13 slave
nodes: VCPUs @2.60GHz × 2; 8GB RAM; 70GB HDD and one interface node:
VCPUs @2.60GHz × 4; 16GB RAM; 130GB HDD. The results of I/O bench-
marking on the computational resources was: bi-directional network bandwidth:
7.88 ± 1.03Gbits/sec; cached reads rate: 3036.1 ± 67.1MB/sec; buffered disk
reads rate: 134.6± 18.1MB/sec, and disk write rate: 599.7± 39.1MB/sec.

Figure 6 illustrates the architecture of the software-stack (SMASH) used
on the Cloud nodes for implementing RT-DBSCAN. The software compon-
ents were packaged into Docker images for scaling of the platform. Instead of
using scaling tools like Kubernetes (https://kubernetes.io) or Docker Swarm (ht-
tps://docs.docker.com/engine/swarm/), a bespoke tool (https://github.com/project-
rhd/grunt-clouddity) was developed and used for auto deployment and scal-
ing the SMASH platform, e.g., creating/terminating VMs, managing security
groups/rules and scaling Docker containers. This is a command line interface
tool that relies on http clients interfacing to OpenStack and Docker.

In Figure 6, the software containers are divided into three layers: an Application
layer comprising GeoServer (v2.9.4) and Apache Kafka (v0.11.0.0). These two
applications/containers are deployed on interface nodes for data visualization
and stream pipelines. A Computation layer including Apache Spark (v2.1.1)
with a master node and thirteen slave nodes, and a Data Storage layer deployed
across the master node and slave nodes. The Hadoop Distributed File System
(HDFS) (v2.7.4) is installed as the file system of the SMASH platform (block
replication 2 and sync.behind.writes and synconclose are enabled to ensure data
is written immediately into disk; Hadoop data directories are mounted to the
local file system of the nodes; Default values are used for other configurations).
Apache Accumulo (v1.8.1) is deployed over HDFS as a key/value data store
which is similar to Google’s BigTable storage. GeoMesa (v1.3.2) is a distributed,
spatio-temporal database which is deployed on top of the Accumulo cloud data

Figure 6. Illustration of Dockerized SMASH Platform
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storage. In RT-DBSCAN, historical/checkpoint data created is persisted and
indexed in GeoMesa/Accumulo.

Tweets are used as the data source for our benchmarking cases studies. We
collected a fixed size of tweets data which were post in Melbourne within 6
months in 2015. This dataset contains 604,529 tweets (≈ 220MB) with GPS and
time-stamps. An application was built for reading this dataset and generating
the actual data stream. This generator controls the output rate of the stream
and pushes it into the Kafka service on the SMASH platform. Our stream
application running on Spark gets continuous data streams from Kafka, applies
the RT-DBSCAN algorithm on this stream and persists/updates the results on
GeoMesa/Accumulo clusters.

Figure 7 illustrates a series of checkpoints generated by RT-DBSCAN (on-
the-fly). The results are visualized by GeoServer on SMASH. Each red point
on the maps of Figure 7 represents a noise point which does not belong to any
clusters. Each larger green point represents a in-cluster point. RT-DBSCAN is
able to start either from a blank or using existing clusters result as the initial
starting point (checkpoint). Incremental update is then conducted at each tick
(corresponding to micro-batches in Spark Stream) which handles new inputs and
generates up-to-date checkpoints based on previous checkpoint.

RT-DBSCAN on Spark Streaming is naturally a “micro-batching” based
architecture. A streaming engine is built on the underlying batch engine, where
the streaming engine continuously creates jobs for the batch engine from a
continuous data stream. There are two important concepts in this architecture.
One is the “Batch Interval Time” (BIT) which is a fixed interval value decided by
the user of Spark Streaming. This value controls the interval used for generating
micro-batch tasks for the underlying batch engine, i.e., the tick interval. Another
concept is the “Batch Processing Time” (BPT) which is the exact execution
time for each batch task. Ideally, Spark Stream needs to ensure a batch task is
completed before the next batch is queued. If the processing times of arriving
batches continuously takes longer than the batch interval time, a “snowball effect”
can take place. This effect can eventually exhaust Spark resources. Depending
on the setting, Spark may discharge this pressure by killing the application
or by pushing this pressure back to the broker of data source, e.g., Apache
Kafka. Therefore it is important to ensure that for most of the batches that the
BPT < BIT. The scheduling delay τi for each batch i in sequence is defined as:
δi = BPTi −BIT where

τi =


0, if i = 0

τi−1 + δi, else if τi−1 + δi > 0

0, else

(2)

The total delay Ti for each batch i in sequence is defined as: Ti = τi +BPTi.
The average processing delay νi for each arriving input data involved in batch i

Figure 7. Cluster Checkpoints Generated by RT-DBSCAN
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Figure 8. Benchmarking Scalability under Input Rates = 1, 000 points/sec

can be estimated by: νi = Ti + BIT
2 , where BIT is a fixed configurable parameter

on Spark Streaming. When τi = 0, the system achieves its optimal performance.
If the value of τi and Ti keep increasing, a “snowball effect“ occurs and the
system is considered unstable against the input stream. On the other hand, if the
value of τi and Ti are stable under a red line, this system is considered stable. In
the following case studies, we benchmark the RT-DBSCAN on Spark Streaming
by using different numbers of Spark executors and different input rates of data
streams. τi and BPTi are monitored for evaluating the stability and performance
of RT-DBSCAN. The default parameters used in our following RT-DBSCAN
benchmarking included DBSCAN parameters: spatio-temporal ε calculated by
Equation 1, where inputs are: Dg = 100m; 4t = 600sec; s = 1.667m/sec
and minPts = 3. as well as non-DBSCAN parameters: FC partition config:
maxPts = 100; minSize = 2× ε. time (BIT ) = 30 seconds.

The selected value for the spatial-temporal ratio s reflects walking speed.
The source code of RT-DBSCAN implementation using Spark Streaming is
available at our GitHub repository (https://github.com/project-rhd/smash-
app/tree/master/smash-stream).

Figure 8 presents the results of benchmarking the scalability of RT-DBSCAN.
The data input rate here is set to 1, 000 points per second. Performance on
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different numbers (scales) of Spark executors are benchmarked under the same
data stream. The two charts in Figure 8 show the timeline on the x axis and
τi, BPTi on the y axis. According to the charts, the first batch usually takes a
longer time to process. This is because several initiations are conducted at the
beginning of the first tick, e.g., database connections. Almost all the BPTi of
1 node× 2 cores are larger then BIT and thus τi keeps growing. This pattern
means 1 node × 2 cores is not stable with the default parameters in tackling
this rate of input data stream. Following this rule, 3 nodes× 2 cores is the most
stable and efficient scale among the candidates in Figure 8 since its τi reaches
zero after several batches from the initiation. The delay of 6 nodes× 2 cores and
12 nodes × 2 cores are even larger than 1 node × 2 cores at the beginning of
processing. However the trends of their τi stablilises and their BPTi wavers near
the BIT line. These two scales are considered stable under this data rate but they
are not the optimal options. The overhead of network I/O among multiple nodes
is the major bottleneck with these numbers of nodes. To conclude, scaling the
number of executors of RT-DBSCAN has a positive effect on its performance but
having too many nodes can impact the efficiency due to the data transmissions
required over the network. In addition to the number of Spark executors, there
are several non-DBSCAN parameters that can impact on the efficiency and
stability of RT-DBSCAN under high data velocity situations, e.g., FC partition
parameters and the BIT (tick time). Figure 9 benchmarks the performance of
RT-DBSCAN according to maxPts which is a parameter/threshold used in the
FC partition method. A 1 node × 2 cores Spark cluster is used and the input
rate is 600 points/sec. maxPts has a direct impact on the number of points
in each cell and the number of data partitions needed for parallel computing,
i.e., it impacts on the granularity of parallelization. As seen, maxPts = 200
is the optimal setting for the cluster among all other candidates. We also find
that the value of maxPts does not have a significant impact on the performance
(delay). Figure 10 benchmarks the performances on BIT i.e., the tick time. A
1 node× 2 cores Spark cluster is used and the input rate is 600 points/sec. As
seen, BIT has a significant impact on the stability of RT-DBSCAN. A larger
value of BIT can make the system more stable under higher input rates. However
increasing BIT will improve the average delay for processing each input data.
Therefore, an elastic BIT is a good strategy to balance the stability and output
delay for RT-DBSCAN.

6 Conclusions

In this paper, we propose a new extension of the DBSCAN algorithm for clustering
spatio-temporal data targeted specifically to real-time data streams. The novelties
of this algorithm are that it tackles ever-growing high velocity data streams and
utilizes density based clustering. Furthermore, the spatio-temporal data does not
need to arrive in time based sequence.

In the benchmarking, we identify and discuss several configurations that were
explored for the performance of RT-DBSCAN over Spark Stream. For future
works we shall consider auto-scaling at both the platform level and Spark workers
level. We shall also consider In-memory indexing/caching for recent data, e.g., if
streamed data arrives in a particular sequence. Data label sensitive clustering
e.g., identifying social media data created by the same user in a cluster can also
be considered. The FC partition can also be applied to other algorithms for
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real-time parallel processing. Finally we are considering variability in the tick
times and use of other stream processing engine such as Apache Storm.
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