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Abstract. This paper presents parallel solutions to the k-difference primer prob-
lem, targeting multicore processors and GPUs. This problem consists of finding
the shortest substrings of one sequence with at least k differences from another
sequence. The sequences found in the solution are candidate regions to contain
primers used by biologists to amplify a DNA sequence in laboratory. To the au-
thors’ knowledge, these are the first parallel solutions proposed for the k-difference
primer problem. We identified two forms, coarse- and fine-grained, of exploiting
parallelism while solving the problem. Several optimizations were applied to the so-
lutions, such as synchronization overhead reduction, tiling, and speculative prefetch,
allowing the analysis of very long sequences in a reduced execution time. In an ex-
perimental performance evaluation using real DNA sequences, the best OpenMP
(in a quad-core processor) and CUDA solutions produced speedups up to 5.6 and
72.8, respectively, when compared to the best sequential solution. Even when the
sequences length and the number of differences k increase, the performance is not
affected. The best sequential, OpenMP, and CUDA solutions achieved the through-
put of 0.16, 0.94, and 11.85 billions symbol comparisons per second, respectively,
emphasizing the performance gain of the CUDA solution, which reached 100% of
GPU occupancy.

Keywords: Inexact matching, High performance computing, Parallelism, Multi-
core processor, GPU

1 Introduction

Advances in DNA sequencing technologies have been causing biological databases to grow
almost exponentially. Given this huge amount of data and the long length of biological
sequences, high performance solutions to sequence analysis problems have been proposed in
order to allow biologists to extract useful information from these data. Approximate string
comparison is an essential operation in biological sequence analysis and serves as basis for
several more complex manipulations. It properly models changes that happen in DNA
sequences through the evolution process, such as insertions, deletions, and substitutions
of nitrogenous bases [1].

The k-difference primer problem is one of such manipulations and consists of, given two
sequences α and β and an integer k, find for each position j in α, the shortest substring of
α that begins at j and has at least k differences from any substring of β [2]. For instance,
assume α = ACTG, β = AGCAAG, and k = 2. The substrings α1..3 = ACT and
α2..4 = CTG form the solution, since they have at least two differences from any segment
of β. The sequences found in the solution of the k-difference primer problem are candidate
regions to contain primers [2]. Primers are short strands of DNA that bind (hybridize)
to a DNA sequence and are used by biologists to amplify that sequence in laboratory,
through the Polymerase Chain Reaction technique [7]. For instance, in order to identify
the causative agent of a disease, it is necessary to select a primer that hybridizes to the
DNA sequence of the causative agent and that does not hybridize to the DNA sequence
of the infected organism or other pathogens.
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This paper presents parallel solutions to the k-difference primer problem, targeting
multicore processors and GPUs. The solutions are able to analyze very long sequences in
a short execution time. The multicore and GPU solutions achieve speedups up to 5.6 and
72.8, respectively, when compared to the best sequential solution.

The paper is organized in six sections. Section 2 describes two sequential algorithms
to the k-difference primer problem and identifies forms to exploit parallelism in it. In
Sections 3 and 4 we present our parallel solutions targeting multicore processors and
GPUs, respectively. We also describe the optimizations applied to them and analyze their
performance. Section 5 reviews previous works in parallel solutions to the approximate
string matching problem, which is closely related to the problem studied here. Finally,
Section 6 summarizes the results.

2 Solutions to the k-difference Primer Problem

The solution to the k-difference primer problem described in [2] is based on the resolution of
several instances of the approximate string matching problem. The latter problem consists
in, given two sequences and an integer k, find all occurrences of one sequence in the other
with at most k differences. The differences can correspond to insertions, deletions, or
substitutions of symbols in the strings. The idea is that, in order to solve the k-difference
primer problem, i.e., to find the shortest substrings of α that have at least k differences
from any substring of β, we can find the longest substrings of α with k−1 differences from
β and add one symbol to these substrings [3]. Two solutions to the approximate string
matching problem, presented in [4, 5], are adapted and used here as substeps, producing
two solutions to the k-difference primer problem, referred as conventional and alternative
solutions.

Figure 1 shows the main function of both sequential k-difference primer solutions. For
each position r of sequence α of length m, we solve an instance of the approximate string
matching problem, invoking a subroutine which finds the longest prefix of αr..m with k−1
differences from all substrings of sequence β, of length n, and add one symbol to the prefix
found. At each iteration r, a shorter suffix of α is processed by the subroutine, which
returns the length of the prefix found. If no solution is found at a certain iteration, we
can stop the execution because the next iterations will not produce solutions either. The
conventional and alternative solutions differ only in the algorithm used for the subroutine.

Initializations
while r ≤ m− k + 1 and not stop do

c := longest prefix with differences(αr..m, β, k)
if c 6= 0 and r + c < m then Solution αr..r+c+1 found
else stop := 1
r := r + 1

Fig. 1. k-difference primer sequential solution, for sequences α and β: m=|α| and n=|β|

Figure 2(a) and (b) shows the subroutines longest prefix with differences used in the
conventional and alternative solutions, respectively. The first subroutine computes a dy-
namic programming matrix D with dimensions (m+1)×(n+1). The rows and columns of
D correspond to symbols of α and β, respectively. The cell D[i, j] represents the number
of differences between α1..i and any substring of β ending at βj . The algorithm searches
the highest row i with a cell that satisfies D[i, j] = k − 1. Using this subroutine, the
conventional solution to the k-difference primer problem has time complexity O(m2 × n).
The space complexity is O(n), since the same matrix D is reused in all invocations of
the subroutine, which is optimized in order to reduce the amount of memory needed, by
allocating only one row for D, and reusing it for all iterations of the outer loop.
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Initializations
for i := 1 to m do

for j := 1 to n do
if αi 6= βj then

t := 1
else

t := 0

D[i, j] := min

{
D[i, j − 1] + 1
D[i− 1, j] + 1
D[i− 1, j − 1] + t

if D[i, j] = k − 1 then
c := i

return c
(a)

Initializations
for e := 0 to k − 1 do

for d := −e to n− 1 do

row := max

{
L[d− 1, e− 1]
L[d+ 1, e− 1] + 1
L[d, e− 1] + 1

row := min(row,m)
while row < m and row + d < n

and αrow+1 = βrow+1+d do
row := row + 1

L[d, e] := row
if e = k − 1 and L[d, e] > c then

c := L[d, e]

return c
(b)

Fig. 2. Subroutine longest prefix with differences, used in the (a) conventional and (b) alternative
solutions, computes dynamic programming matrix D and L, respectively, in order to find the
longest prefix of α with k − 1 differences from all substrings of β

The subroutine longest prefix with differences used in the alternative solution (Fig-
ure 2(b)) computes a dynamic programming matrix L with dimensions (n+k+2)×(k+2).
The rows and columns of L correspond to diagonals of matrix D and number of differences,
respectively. A diagonal d of D is formed by cells D[i, j] such that j−i = d. The cell L[d, e]
represents the highest row i of D such that D[i, j] = e and D[i, j] belongs to diagonal d.
Then, e is the number of differences between the prefix α1..L[d,e] and any substring of β
that ends at βL[d,e]+d. The algorithm searches the maximum value in column k − 1 of
matrix L, which represents the highest row i of D with a cell that satisfies D[i, j] = k− 1.
Using this subroutine, the alternative solution to the k-difference primer problem has time
complexity O(m2 × n × k). The space complexity is O(n + k), since the same matrix L
is reused in all invocations of the subroutine, which is also optimized in order to reduce
the amount of memory needed, by allocating only one column for L, and reusing it for all
iterations of the outer loop.

2.1 Optimizations and Preliminary Results

We developed two optimizations that can reduce the number of cells of matrices D and
L that need to be computed in the conventional and alternative solutions. In the first
optimization, referred as optimization 1 and applied only to the conventional solution,
when executing the subroutine longest prefix with differences (Figure 2(a)), if we find a
row i of matrix D, such that D[i, j] ≥ k, for all j, we conclude we have already found the
solution and there is no point in computing the remaining cells of D. This optimization is
implicit in the alternative solution, since matrix L is computed only up to column k − 1.
The second optimization, referred as optimization 2, is applied only to the alternative
solution. When executing the subroutine longest prefix with differences (Figure 2(b)), if
we find an occurrence of α in β with less than k differences, we conclude no solution will
be found and we do not compute the remaining cells of L.

We evaluated the sequential solutions and the proposed optimizations on a computer
with an Intel Xeon quad-core processor and 32GB RAM, using GCC with -O3 optimiza-
tion option. In all experiments, our biological input data set consists of DNA sequences
homologous to the IL1RAPL1 gene, from Homo sapiens chromosome X, and obtained
from the HomoloGene database, available at NCBI (National Center for Biotechnology
Information) [9]. In a final experiment in Section 4.3, huge sequences are used.

Table 1 compares the conventional and alternative sequential solutions and the opti-
mizations applied. The execution times correspond to the arithmetic mean of several execu-
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tions, which produced a standard deviation of only 1.04. The table also shows the number
of comparisons of symbols from α and β performed by each solution. The conventional
non-optimized solution computes the matrix D entirely in every call to the subroutine
longest prefix with differences, leading to approximately 230 trillions comparisons, which
make its execution impracticable. Optimization 1 applied to this solution enables an al-
most 100-fold reduction in the number of comparisons. Despite having a higher worst-case
time complexity than the conventional solution, the alternative solution produced smaller
execution times, since the computation based on diagonals produces less comparisons than
the conventional solution. Optimization 2 applied to the alternative solution produces a
small reduction in the comparisons, since it allows us not to compute completely only the
last matrix L. Therefore, it results in a slightly shorter execution time.

Table 1. Evaluation of sequential solutions and optimizations: execution time and number of
comparisons of α and β symbols, for |α|=43, 606, |β|=241, 494, and k=100

Solution+optimization Execution time (s) # of symbol comparisons (×1010)

Conventional * ∼22 960
Conventional+1 12 216.1 ∼243
Alternative 8 376.7 ∼137
Alternative+2 8 230.9 ∼137

* Not measured due to extremely long execution time.

2.2 Exploiting Parallelism

Although they have polynomial time complexity, both conventional and alternative so-
lutions can be very computationally demanding, due to the long length of biological se-
quences. Therefore, we seek high performance solutions that compute cells of the dynamic
programming matrices in parallel, in order to reduce the execution time. Analyzing the
data dependences for computing these cells, we identify two forms to exploit parallelism
in the k-difference primer problem.

We can execute in parallel different calls of the subroutine longest prefix with differences
(for both conventional and alternative solutions), since the computation of each matrix is
independent from the others. This way, several matrices (D or L) are computed in paral-
lel, which we call coarse-grained parallelism. We can also exploit fine-grained parallelism
by computing different cells in a same matrix (D or L) in parallel. Figure 3(a) and (b)
illustrates the computation of matrices D and L, respectively, in conventional and alter-
native solutions. The arrows represents data dependences. We can compute in parallel all
cells in a same anti-diagonal of D (or column of L), since they are independent from each
other, while different anti-diagonals of D (or columns of L) are computed sequentially.
Both forms of parallelism can be exploited in conjunction.

3 OpenMP Solutions to the k-difference Primer Problem

Based on the two forms of parallelism identified, we developed parallel solutions to the k-
difference primer problem, targeting multicore processors and using the OpenMP parallel
programming model [11]. Figure 4(a) shows how to exploit coarse-grained parallelism in
the conventional and alternative solutions, using OpenMP. The while loop of Figure 1
must be transformed into a for loop, so we can use the directive omp parallel for, which
creates a parallel region and distributes the loop iterations among the threads. Each thread
calls different instances of subroutine longest prefix with differences, computes different
matrices D or L and produces its results separately from other threads. The flag stop is
shared among the threads, in order to stop the execution of subsequent loop iterations
when, at a certain iteration, no solution is found.
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Fig. 3. Data dependences and fine-grained parallelism: (a) cells in the same anti-diagonal of
matrix D computed in parallel in conventional solution; (b) cells in the same column of matrix
L computed in parallel in alternative solution

Figure 4(b) shows how to use OpenMP to exploit fine-grained parallelism in subroutine
longest prefix with differences of the alternative solution. The directive omp parallel for
is used around the inner loop, creating a parallel region and distributing the iterations
among the threads. Each thread computes different cells in a column of matrix L. At the
end of this region, an implicit barrier synchronization guarantees that successive columns
are computed sequentially. The directive omp critical creates a critical section and ensures
the shared variable c (which holds the result) is updated with mutual exclusion by the
threads.

#pragma omp parallel for \
schedule(static,1) \
shared(result,stop) private(c) \
firstprivate(alpha,beta,m,n,k)
for(r = 0; r <= m−k; r++)
if(r < stop){

c = longest prefix w differences(
alpha,beta,k);

if((c != 0) && (r+c < m))
result[r] = r+c;

else stop = r;
}

(a)

for(e = 1; e <= k; e++)
#pragma omp parallel for shared(L,c) \
schedule(static) private(row)\
firstprivate(alpha,beta,k,m,n,e)
for(d = k−e+1; d < n+k; d++){

row = max(L[d−1][e−1],
L[d+1][e−1]+1, L[d][e−1]+1);

if(row > m) row = m;
while((row<m)&&(row+d−k<n)&&

(alpha[row]==beta[row+d−k]))
row = row+1;

L[d][e] = row;
if(e == k)

#pragma omp critical
if(row > c) c = row;

}
(b)

Fig. 4. OpenMP implementations exploiting: (a) coarse-grained parallelism for the conventional
and alternative solutions; and (b) fine-grained parallelism in the subroutine longest prefix with
differences of the alternative solution

In order to exploit fine-grained parallelism in the conventional solution, using OpenMP,
the subroutine longest prefix with differences in Figure 2(a) must be adapted in order to
compute matrix D by anti-diagonals. An outer loop computes successive anti-diagonais
sequentially, while an inner loop computes the cells in a same anti-diagonal. The directive
omp parallel for is used around this inner loop, creating a parallel region and distribut-
ing the iterations among the threads, so that each thread computes different cells in an
anti-diagonal of D. An implicit barrier synchronization at the end of this parallel region
guarantees that the next anti-diagonal is not computed before the current one is completed.
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The optimization that reduces the amount of memory needed to compute matrix D
(or L), used in the sequential solutions, is also applied to the OpenMP solutions (for
simplicity, it is not shown in Figure 4). If we exploit only coarse-grained parallelism, one
row of D (or column of L) is needed. Exploiting fine-grained parallelism, we need three
anti-diagonals of D (or two columns of L).

3.1 Optimizations and Preliminary Results

Optimization 1 (from Section 2.1) can also be applied to the conventional coarse-grained
OpenMP solution. Nevertheless, it cannot be applied to the conventional fine-grained
OpenMP solution because the solution scans matrix D by anti-diagonals and the opti-
mization needs to check D by rows. Since this optimization produced a huge reduction
in the symbol comparisons, the execution of this solution, even in parallel, was impracti-
cable. Optimization 2 (from Section 2.1) can be applied to both alternative coarse- and
fine-grained OpenMP solutions.

In order to reduce the synchronization overhead, another optimization, referred as op-
timization 3, is applied to OpenMP fine-grained conventional and alternative solutions.
It eliminates the critical section that guards the shared variable c update shown in Fig-
ure 4(b). A vector with one position for each thread is used, so that each thread stores
its result in a different position of the vector, instead of sharing the variable c. Therefore,
the critical section is no longer needed. After finishing the execution of the nested loops,
a small loop finds the maximum value of the vector, which is then assigned to variable c.

Table 2 compares the parallel OpenMP conventional and alternative solutions, exploit-
ing coarse- and fine-grained parallelism, and the optimizations applied. We used the same
biological input data employed for the sequential solutions, as well as the same platform (a
quad-core processor now running 8 threads). The speedups compare the parallel solutions
to the best sequential one (alternative+optimization 2). The alternative coarse-grained
solutions achieved better performance than the conventional coarse-grained solution with
optimization 1 because it performs less symbol comparisons, as we have seen in Table 1.
Optimization 2 applied to the alternative solution produces a very small reduction in the
execution time. Comparing coarse- and fine-grained approaches used in alternative solu-
tion+optimization 2, the latter produces worse results, because it is not suitable to the
processor reduced number of cores. Nevertheless, when optimization 3 is applied to the
alternative fine-grained solution, it produces a significant improvement in performance,
almost doubling the speedup and showing the impact of the synchronization overhead
reduction. Given the limited parallel processing capability of the quad-core processor, the
combination of coarse- and fine-grained parallelism produces worse results.

Table 2. Evaluation of OpenMP parallel solutions and optimizations, using 4 cores and 8 threads:
execution time and speedup wrt. best sequential solution, for |α| = 43, 606, |β| = 241, 494, and
k = 100

Parallel solution+optimizations Execution time (s) Speedup

Conventional coarse-grained+1 2 067.2 4.0
Alternative coarse-grained 1 509.8 5.4
Alternative coarse-grained+2 1 481.1 5.6
Alternative fine-grained+2 3 091.2 2.7
Alternative fine-grained+2+3 1 544.1 5.3
Alternative coarse/fine-grained+2+3 2 114.8 3.9

Figure 5 shows how the performance of the best OpenMP solution (alternative coarse-
grained+optimization 2) scales as the number of threads increases, from 1 (sequencial
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solution) to 8, using the quad-core processor. The speedups compare the parallel solution
to the best sequential one (alternative+optimization 2). The speedup grows linearly with
the number of threads, up to four threads, matching the number of cores available. For 6
or 8 threads, the speedup grows more slowly, since the threads have to share the cores.

1 2 4 6 8

1

2

3

4

5

6

7

8

# of threads used

Execution time (×103 s)

Speedup

Fig. 5. Performance of best OpenMP solution (speedup wrt. best sequential one), using 4 cores
and varying the number of threads, for |α| = 43, 606, |β| = 241, 494, and k = 100

4 CUDA Solutions to the k-difference Primer Problem

We also developed parallel solutions to the k-difference primer problem, targeting GPUs
and using the CUDA programming model [10]. Since GPUs have a large number of cores,
they are suitable for exploiting both forms of parallelism identified. Each matrix D or
L is computed by a block, in parallel to the other matrices, exploiting coarse-grained
parallelism. The threads in a block compute the cells in an anti-diagonal of D (or a
column of L) in parallel, exploiting fine-grained parallelism. If the number of matrices
that have to be computed is larger than the maximum number of blocks which can be
created in a kernel invocation, we compute these matrices in batches. We have one kernel
invocation for each batch, where the matrices in the same batch are computed in parallel
and successive batches are executed sequentially.

We started with two base CUDA solutions, derived from the conventional and alter-
native approaches. In both solutions, the data structures used for sequences α and β and
matrix D or L are allocated in GPU global memory, since the sequences are extremely long
and GPU shared memory has limited capacity. Optimization 1, presented in Section 2.1,
cannot be applied to the conventional CUDA base solution because this solution com-
putes matrix D by anti-diagonals and the optimization needs to check D by rows. When
optimization 2, presented in Section 2.1, is applied to the alternative CUDA solution, it
worsens the execution time, therefore we discarded it. Since it provides only a small re-
duction in the symbol comparisons and the GPU computes many more comparisons in
parallel than the sequential and OpenMP solutions, the intrinsic optimization overhead
surpassed the performance gain.

Optimization 3, presented in Section 3.1, is applied to both conventional and alterna-
tive CUDA solutions. For each block computing a different matrix, we keep a vector in
GPU shared memory with one position for each thread to store its result in a different
position. Therefore, no synchronizations are needed. Before finishing the kernel execution,
a reduction operation is performed in parallel by the block threads, in order to find the
maximum value of the vector, which is the result for this matrix.
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4.1 Tiling Optimization

In order to take advantage of GPU memory hierarchy, the tiling technique, referred as
optimization 4, is applied to both conventional and alternative CUDA solutions. Matrix
D (or L) is divided into tiles, so that, inside a tile, we compute in parallel the cells in an
anti-diagonal of D (or column of L), however successive tiles are computed sequentially.
Therefore, we no longer have to allocate an entire anti-diagonal of D (or column of L), in
order to compute the tile cells. The data structure used to keep this cells is reduced and
can be allocated in GPU shared memory, avoiding access to global memory which is much
more slower.

Figure 6(a) and (b) shows matrix D and L, respectively, split into tiles, where the tile
size is determined by the number of threads per block used. The thick lines in the figure
represent the tiles separation. A tile in matrix D has a rectangular shape, while in matrix L
it has a parallelogram shape, due to the different data dependences pattern in this matrix.
The shaded areas in the figure represent the cells that must be saved after finishing to
compute a tile, and that are used for computing the next tile. For the conventional solution
and matrix D, this structure has size O(n), which is the length of input sequence |β|.
Consequently, this structure must be allocated in GPU global memory. However, for the
alternative solution and matrix L, this structure has size O(k) (the minimum number of
differences) and can be allocated in shared memory.
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Fig. 6. Tiling technique: (a) matrix D split into rectangular tiles for conventional CUDA solu-
tion; (b) matrix L split into parallelogram-shaped tiles for alternative CUDA solution. Tile size
determined by the number of threads per block and successive tiles computed sequentially

Another advantage of optimization 4 is that it enables us to apply optimization 1 on
the conventional CUDA solution. Inside a tile, matrix D is computed by anti-diagonals
and optimization 1 needs to check D by rows. However, we can check the cells saved
after computing a tile (shaded cells) and, depending on the result, we do not compute the
remaining tiles.

4.2 Prefetch and Speculation Optimizations

Sequences α and β are allocated in GPU global memory because they are too long to fit on
shared memory. However, before computing each tile, we can prefetch to shared memory
segments of theses sequences that will be used during the tile calculation, in order to avoid
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access to global memory and to improve performance. We refer to the prefetch of segments
of α and β from global memory to shared memory as optimizations 5 and 6, respectively.

In the conventional CUDA solution, the division of matrix D into tiles allows us to
know exactly which segment of α is used for computing a tile, then we prefetch this segment
to shared memory before computing the tile and no access to α in global memory is done
while computing it. However, the entire sequence β is used while computing a tile of D,
which prevents us from using prefetch on it, which remains being accessed from global
memory. In the alternative CUDA solution, we cannot predict which symbols of α and
β will be used while computing a tile of matrix L, therefore we developed a speculative
mechanism, which prefetchs to shared memory segments of α and β that are likely to
be used. During the tile calculation, when a thread accesses a symbol of α or β which
is present on shared memory, we have a hit. Otherwise, we have a misprediction in our
speculation mechanism and the global memory must be accessed.

Analyzing the alternative solution, we conclude that the initial symbols of α are the
most likely to be used, while computing any tile of L. Therefore, we prefetch the initial
segment of α from global to shared memory only once and use it for all tiles. We estimate

the length prefetchα of this segment as
⌈

c×k
threads per block

⌉
×threads per block, since the mini-

mum number of differences k affects the number of symbols of α and β used. The constant
factor c is determined through an experiment in Section 4.3 and we round the value to
be multiple of the number of threads per block. We allocate on shared memory a segment
of β of length prefetchβ , estimated as prefetchα+threads per block. However, before computing
each tile, a new segment with only threads per block symbols is prefetched. During the tile
calculation, this segment and previously prefetched ones are used.

4.3 Results

The execution platform used for the CUDA solutions consists of a GPU NVIDIA GeForce
Quadro M4000 with 8GB RAM and 1664 cores, connected to the same computer (which
acts as a host) used for the sequential and OpenMP solutions. The same biological input
data set is used. The nvprof profiler tool was used to extract performance metrics used
in the experimental evaluation. In all CUDA solutions, the time spent transferring data
between host memory and GPU global memory is insignificant, when compared to the
time spent executing the kernel invocations.

Figure 7 shows the performance of all conventional and alternative CUDA solutions,
applying optimizations incrementally. The execution times were obtained through the
arithmetic mean of several executions, which produced a standard deviation of only
0.02. The speedups compare the parallel solutions to the best sequential one (alterna-
tive+optimization 2).

The tiling technique (optimization 4) has a great impact improving the performance of
the conventional solution, while its impact on the alternative solution seems to be lower.
The difference is that the tiling technique enables the application of optimization 1 on the
conventional solution, reducing the number of matrix D cells computed. This optimization
is implicit in the alternative base solution. Sequence α prefetch (optimization 5) has a great
impact improving the performance of the alternative solution, however its impact on the
conservative solution is small. The reason is that, in conventional solution, we prefetch a
segment of α from global to shared memory before computing each tile, while in alternative
solution, we prefetch a segment of α only once and use it for all tiles.

Table 3 compares the best conventional and all alternative CUDA solutions with respect
to several performance metrics. The throughput measure comparisons per second indicates
how many comparisons of α and β symbols are performed by the solution in one second.
Figure 8 shows the number of load and store operations performed in GPU global and
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Fig. 7. Speedups of conventional and alternative CUDA solutions and optimizations, wrt. to the
best sequential solution, for |α| = 43, 606, |β| = 241, 494, and k = 100

shared memory by these solutions. Analyzing these results in conjunction enables us to
evaluate the effect of the optimizations on the metrics and their impact on the solutions
performance.

Table 3. Comparison of best conventional and all alternative CUDA solutions, for |α| = 43, 606,
|β| = 241, 494, and k = 100

Performance metrics
Convent. Altern. Altern. Altern. Altern.
1+3+4+5 3 3+4 3+4+5 3+4+5+6

# of symbol comparisons (×1010) ∼274 ∼137 ∼137 ∼137 ∼137
Comparisons per second (×108) ∼98.5 ∼61.5 ∼76.0 ∼106.5 ∼118.0
# of instructions executed (×1010) ∼910 ∼402 ∼432 ∼366 ∼352
Instructions per cycle 3.3 1.8 2.4 2.9 3.1
Issue slots utilization* 76 % 43 % 54 % 63 % 65 %

* Percentage of issue slots that issued at least one instruction.

All alternative solutions have better performance than all conventional ones. Even
though the best conventional solution achieves good instructions per cycle rate and issue
slot utilization, it performs nearly twice as many symbol comparisons as the alternative
solutions. The best conventional solution has its memory access optimized, but even so it
performs many more memory operations than the best alternative solution. The conven-
tional solution keeps on global memory the cells that are saved, after computing a tile,
and used for computing the next one, while the alternative solution uses shared memory
for this. Besides, sequence β prefetch (optimization 6) is not applied to the conventional
solution.

Each alternative solution achieves a better performance than the previous one, although
they compute the same number of symbol comparisons. It produces a higher comparisons
per second rate, executes more instructions per cycle, and increases the issue slots utiliza-
tion. As more optimizations are applied, the number of access to global memory decreases
a lot, while the access to shared memory increase more slowly. Using the tiling technique
(optimization 4), the data structure used for computing matrix L is kept in shared mem-
ory, reducing drastically the access to global memory. The load and store operations in
global memory become almost restricted, respectively, to access to α and β symbols and
to saving the results produced. Prefetching α and β segments from global to shared mem-
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Fig. 8. GPU global and shared memory load and store operations of best conventional and all
alternative CUDA solutions, for |α| = 43, 606, |β| = 241, 494, and k = 100

ory (optimizations 5 and 6, respectively) exchanges many global memory load operations
for less load operations in shared memory. Optimization 5 is more effective in improving
performance than optimization 6 because we prefetch a segment of α only once and use it
for computing all tiles, while a segment of β is prefetched for each tile computed.

The performance gain produced by the speculative prefetch mechanism depends on
the accuracy of the prediction. We prefetch to shared memory segments of α and β, of
lengths prefetchα and prefetchβ respectively, that are likely to be used. However, if a thread
accesses a symbol of α or β that is not present on shared memory, we have a misprediction
and an access to global memory is done. We measure the miss rates, which indicate the
percentage of access that generate misses with respect to the total number of access to
α or β, for different lengths prefetchα and prefetchβ , defined using the constant factor c.
Table 4 shows the results obtained using the best alternative solution and varying c from
1 to 3. For c = 1, the miss rate for α is very high, reflecting on the worst execution time.
For c = 3, there are no more mispredictions in both α and β access, even though the
prefetched segments are not very long, and we have the best execution time.

Table 4. Speculative prefetch of α e β symbols, using best alternative CUDA solution, for |α| =
107, 280, |β| = 2, 220, 391, k = 256, and 256 threads per block: constant factor c defines length
prefetchα and prefetchβ of prefetched segments; miss rates correspond to symbols not found in
shared memory and accessed in global memory

c Execution
time (s) Prefetchα Prefetchβ

Miss rate
for α

Miss rate
for β

1 8 193.3 256 512 49.0 % 0.1 %
2 7 453.7 512 768 1.5 % 0.0 %
3 7 401.4 768 1 024 0.0 % 0.0 %

Figure 9 shows the results obtained using the best alternative solution and varying the
number of threads per block used for executing the GPU kernels. The number of threads
per block defines the tile size and represents a compromise between exploiting fine- and
coarse-grained parallelism. Using more threads per block, we compute in parallel more
cells in a same matrix, however, the number of active blocks per GPU multiprocessor is
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reduced, so we compute fewer matrices in parallel. We reach the best trade-off for 256
threads per block, which produced the best execution times, for both k = 50 and 100.
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Fig. 9. Execution time of best alternative CUDA solution, for |α| = 107, 280, |β| = 2, 220, 391,
and k = 50 and 100, varying the number of threads per block: best trade-off between fine- and
coarse-grained parallelism achieved for 256 threads per block

Figure 10 compares the performance of the best sequential, OpenMP and CUDA solu-
tions, for five test cases with huge sequences from our biological input data set. We gener-
ated synthetic sequences only for the last test case, with |α| = 10×105 and |β| = 40×105.
Due to the long execution time, the sequential solution was not executed for last two
test cases. These execution times were estimated based on the speedups obtained for the
other test cases. The CUDA solution reaches speedups that go from 70.0 to 72.8 as the
lengths of α and β and the number of differences k increase, while the OpenMP solution
speedups remain constant at approximately 5.6. The CUDA solution achieved a 100%
GPU occupancy, indicating that the hardware resources were used properly.

|α| ≈ 1
|β| ≈ 10

|α| ≈ 1
|β| ≈ 20

|α| ≈ 5
|β| ≈ 10

|α| ≈ 5
|β| ≈ 20

|α| = 10
|β| = 40

0

4

8

12

16

20

24

28

32

Speedup ≈ 5.6

Speedup: 70.0 – 72.8

Length of α and β (×105 bases)

E
x
ec

u
ti

o
n

ti
m

e
(×

1
0
5

s)

Sequential solution, k = 100

Sequential solution, k = 50

OpenMP solution, k = 100

OpenMP solution, k = 50

CUDA solution, k = 100

CUDA solution, k = 50

Fig. 10. Performance of best sequential, OpenMP and CUDA solutions, for sequences α e β of
different lengths: speedups wrt. sequential solution
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Table 5 shows the throughput measure comparisons per second produced by the best
alternative sequential, OpenMP and CUDA solutions, stressing the performance gain
achieved by the parallel solutions.

Table 5. Comparisons per second of best sequential, OpenMP and CUDA solutions, for |α| =
107,280, |β| = 1, 088, 386, and k = 100

Best alternative solution Sequential OpenMP CUDA

Comparisons per second (×108) ∼1.6 ∼9.4 ∼118.5

5 Related Work

We have not found in the literature works with parallel solutions to the k-difference primer
problem. Nevertheless, there are parallel solutions to the approximate string matching
problem, which is a substep in our problem.

Landau and Vishkin [4, 5] present a parallel algorithm to approximate string matching
based on suffix trees, with a theoretical time complexity of O(logm + k) using n proces-
sors. Nakano [8] proposes solutions to the problem of finding the substring of β with the
minimum number of differences from α. Two theoretical parallel computing models are
used to reflect GPU memory hierarchy features, and the solutions have time complexity
of O(n×mw + n× l) using m threads and w memory banks with memory latency l.

In [13] the authors present GPU and FPGA solutions to approximate string matching
based on regular expression operators. The dynamic programming matrix is split into
regions which are computed in parallel. Using a GPU NVIDIA Tesla C2070 and a FPGA
Xilinx Virtex-4, they achieved speedups of 8,3 and 2,9, respectively, with respect to the
sequential implementation, for a pattern of length 320. For a pattern of length 3200, the
speedup was 18, using the GPU, while the FPGA solution could not be executed due to
hardware limitations.

Rastogi and Guddeti [12] describe a GPU solution to approximate string matching of
several short patterns to a long sequence with at most two differences, using the Burrows-
Wheeler transform (BWT). Using a GPU NVIDIA NVS 300, they achieved speedups up to
8, compared to the sequential implementation, without taking into account the time spent
with the BWT. In [6] the authors present GPU solutions to approximate string matching,
using the Hamming distance, instead of the edit distance, to compute the number of
differences. Therefore, insertions and deletions in the sequences are not allowed, resulting
in a simpler algorithm where only symbol substitutions are allowed. Using a GPU NVIDIA
GeForce GTX 260, the best solution reached speedups between 40 and 80, with respect to
the sequential implementation, while the other solutions achieved speedups of nearly 10.

6 Conclusion and Future Works

This paper presented parallel solutions to the k-difference primer problem, targeting mul-
ticore processors and GPUs. For both platforms, we developed several optimizations that
allowed the analysis of very long sequences consuming a reduced execution time. To the au-
thors’ knowledge, these are the first parallel solutions proposed for the k-difference primer
problem.

Starting with two different algorithms, we identified two forms of exploiting paral-
lelism in the k-difference primer solutions, coarse- and fine-grained parallelism. Among
the OpenMP solutions, the alternative coarse-grained solution was the one that produced
the best performance results, reaching speedups up to 5.6, when compared to the best

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_39

https://dx.doi.org/10.1007/978-3-319-93698-7_39


14

sequential solution and using a quad-core processor. Given the reduced number of cores,
the fine-grained parallelism is not adequate for this platform.

Several optimizations were applied to the CUDA solutions in order to improve perfor-
mance. The synchronization overhead is reduced by allowing each thread to produce its
result separately and using a parallel reduction operation to find the final result. The tiling
technique enabled the solutions to handle input data sets with very long sequences and
reduced drastically the global memory access. A speculative prefetch mechanism improved
even more the use of the GPU memory hierarchy and reached an accuracy of 100%.

The best CUDA solution produced impressive speedups up to 72.8, with respect to
the best sequential solution, and this performance is not affected when the sequences
length and the number of differences k increase. The best sequential, OpenMP, and CUDA
solutions reached the throughput of 0.16, 0.94, and 11.85 billions comparisons per second,
respectively, emphasizing the performance gain of the CUDA solution. Since this solution
reached 100% of GPU occupancy, if executed on a more powerful GPU, it would achieve an
even better performance, because more matrices and cells would be computed in parallel.

Despite the significant results achieved with our parallel solutions, an interesting re-
search subject is to investigate other sequential algorithms for the k-difference primer
problem and how to map them to a parallel platform.
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