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Abstract. Modelling and simulation of bacterial biofilms is a computationally 

expensive process necessitating use of parallel computing. Fluid dynamics and 

advection-consumption models can be decoupled and solved to handle the fluid-

solute-bacterial interactions. Data exchange between the two processes add up to 

the communication overheads. The heterogenous distribution of bacteria within 

the simulation domain further leads to non-uniform load distribution in the par-

allel system. We study the effect of load imbalance and communication over-

heads on the overall performance of simulation at different stages of biofilm 

growth. We develop a model to optimize the parallelization procedure for com-

puting the growth dynamics of bacterial biofilms. 

 

Keywords: Load imbalance, communication overhead, biofilm. 

1 Introduction 

Computational models involving grid based or lattice-based systems are solved in 

parallel to reduce the overall computation time. In cases of uneven spatial distribution 

of grids or non-homogenous presence of model objects such as cells, catalysts or solid 

structures in the domain, the allocation of computational load to the processors may not 

be uniform. Such discrepancies will result in decrease of parallel computing efficiency. 

In multiphysics systems comprising of fluid flow, solute diffusion, reaction (or con-

sumption) and cell growth, multiple methods of solving the models need to be imple-

mented. For instance, Finite Element based Method (FEM) [1] or Lattice Boltzmann 

Method (LBM) [2] can be used to solve fluid dynamic equations, FEM or Finite Vol-

ume Method (FVM) [3] to solve the Fick’s Equation of diffusion and solute consump-

tion and Agent Based Method (ABM) [4] to handle the cell behavior. When combining 

these methods, there always exists a communication channel between them. This con-

tributes to communication overhead in parallel computations.  In addition, there will be 

fractional communication overhead [5] within a method resulting from memory access 
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(gathering and scattering) between each processor. Therefore, it is necessary to estimate 

the communication overhead between the methods, fractional overhead, and the paral-

lel execution durations to optimize the parallel computation process. 

In nature, bacteria exhibit two modes of growth, planktonic and biofilm. During their 

planktonic form of growth, bacteria exist as individual cells that float around in a fluid 

medium. Due to their direct exposure to ambient environmental conditions, planktonic 

bacteria are susceptible to antibiotics, bacteriophages, and other chemicals. In contrast, 

during the biofilm mode of growth, the bacteria adhere to a solid surface and to other 

bacteria near them, forming a large colony of bacteria confined within a structure 

known as biofilm. By shielding the bacteria from harsh environmental conditions, bio-

films protect them from detrimental external factors and act as a platform for develop-

ing antibiotic drug resistance. Therefore, to tackle the health hazards and environmental 

issues arising from detrimental bacterial biofilms it is necessary to understand the dy-

namics of biofilm formation. Bacterial biofilm modelling has become an important tool 

in analyzing and predicting the quorum sensing [6] within the bacterial community, 

detachment of biofilms [7, 8], and phage-bacteria interactions [9]. Bacterial biofilms 

are complex systems that require multiphysics based models to effectively describe 

their evolution process. In most studies [10-12], proliferation of bacteria is modelled 

by considering the diffusion of essential nutrients such as oxygen or glucose around 

them.  The individual bacterial cells are commonly represented as ‘point sinks’ or re-

action zones within the diffusion domain. Thus, bacteria consume diffusing nutrients 

and proliferate based on the rate of consumption governed by Monod kinetics [13], 

Tessier kinetics [14] or other rate equations. The diffusion process is usually solved 

using grid-based methods, which can also be parallelized. Bacterial distribution on the 

grids is non-homogenous and localized to regions where biofilms are present. This 

leads to variable load allocation on the processors, with maximum load on the processor 

solving the grid points comprising most bacteria. In addition, bacterial biofilms in ex-

periments are grown in flow cells [15], which have fluid flowing within the chambers 

growing biofilm. Here, computational fluid dynamics (CFD) needs to be implemented 

to model the effect of fluid on the mass transfer of nutrients. Such complex model sys-

tem with CFD and solute mass transfer necessitates parallelization and optimization of 

the solving process. However, there are only a few studies that address the concerns of 

parallel computation of biological models [16, 17]. These studies are restricted to anal-

ysis of parallel efficiency in a single method (either CFD or solute mass transfer) and 

ignore the communication overhead arising from coupling multiple methods. 

We develop a model to analyze and optimize parallel computations in biofilm 

growth simulations. In the model, we extend the load balancing model proposed by 

Alowayyed et al. [16] to include the communication overhead between the methods. 

The effects of domain size, bacterial cell distribution and mesh element size on the 

parallelization efficiency are analyzed. Also, we develop a simplified function based 

on the above parameters to obtain the optimal number of processors required to simu-

late different stages of biofilm growth. 
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2 Methodology 

2.1 Computational Methods 

We have two processes involved in the biofilm model, (m1) fluid dynamics simulation 

and (m2) solute simulation. To model the fluid dynamics of the growth medium in the 

simulation domain, we solve the incompressible Navier-Stokes (NS) equation and con-

tinuity equation listed in Eq.1 and Eq.2 respectively. In Eq.1 u is the velocity vector, p 

is the fluid pressure, 𝜈 is the kinematic viscosity and g is the external force (gravity) 

acting on the fluid. In cases of biofilm growth, the knowledge of steady-state nutrient 

concentration is required to model the cell proliferation. There are two ways to predict 

the steady state velocity profiles, solve the NS and continuity equations assuming no 

change of velocity with time, ie., 
𝜕𝒖

𝜕𝑡
= 0 , or solve the equations taking small time steps 

‘dt’ until the spatial velocity values converge. In our study, for numerical stability and 

accuracy we use the latter method of solving the transient state flow to arrive at steady 

state velocity.  For simulating the flow, we use FENICS [18, 19], an open source finite 

element based partial differential equation solver.  NS and continuity equations in 

FENICS were implemented using Incremental Pressure Correction Scheme (IPCS) 

[20]. The meshing for the fluid flow domain was done using GMSH [21]. GMSH is an 

open source mesh generation tool. We generate adaptive meshes to simulate the flow, 

that is, the mesh elements get finer as they approach the surface of biofilm. 

𝜕𝒖

𝜕𝑡
= 𝜈∇2𝒖 − ∇𝐩 + 𝒈 

  (1) 

∇. 𝒖 = 0   (2) 

 

The second simulation (m2) is the solute convection-diffusion-consumption (CDC) 

simulation, modelled using Eq.3 and Eq.4. The solute concentration evolution is de-

fined by Eq.3. where, C is the concentration of glucose, D is the diffusivity of glucose, 

r is the rate of consumption of glucose by the cells. The steady state velocity for esti-

mating the convection-diffusion is obtained from the FENICS solution. This solution 

is coupled with the Finite Volume (FV) mesh generated in FiPy [22]. FiPy is a partial 

differential solver based on (FV). To solve the equations in parallel we use the solver 

module, PyTrilinos, a python wrapper for open source Trilinos modules [23].   

𝜕𝐶

𝜕𝑡
= 𝐷∇2𝐶 − 𝒖. ∇C −  r 

  (3) 

𝑟 = (
𝜇𝑚
𝑌
+ 𝑚)𝐵

𝐶

𝐾 + 𝐶
 

  (4) 
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2.2 Modelling set-up and assumptions 

The bacteria in the biofilm are modelled to occupy a set of connected grid points with 

the simulation domain. In this study, we analyze three different biofilm settings, (i) The 

initial adhesion stage where only a few cells are present, (ii) Intermediate growth stage 

with a hemispherical structure and (iii) A final mushroom shaped structure as shown in 

fig 1. For the boundary conditions in FENICS, we assume a constant velocity inlet, 

atmospheric pressure boundary condition at the outlet and no slip boundary conditions 

near the bacterial cells in the domain as mentioned in equations 5,6 and 7 respectively. 

The mesh is refined near the bacterial cells to improve numerical accuracy. All the 

simulations are carried out for a Reynold’s number, Re, of 100. A fixed number of 

iterations is carried out such that the solution converges to a steady state. 

𝒖 = 𝒖𝒐 ,   at   x=0 

 

  (5) 

𝒑 = 0,   at   x=nx 

 

  (6) 

𝒖 = 0,    along biofilm 

surface 

  (7) 

 

 

Fig. 1. Schematic of various stages of bacterial biofilm growth, (a) Stage 1: The initial adhesion 

stage, (b) Stage 2: Intermediate growth stage and (c) Stage 3: Mature mushroom shaped biofilm 

structure. Yellow color indicates the bacterial cells and dark green color indicates the extracellu-

lar polymeric substances. 

 

We model growth dynamics of the bacteria using single substrate Monod kinetics 

given by Eq.4 Here, 𝜇𝑚, is the maximum specific growth rate, Y is the mass yield co-

efficient, m is the metabolic maintenance coefficient, B is the biomass present at the 

grid and K is the saturation coefficient. Multiple studies involving the bacteria, Pseu-

domonas aeruginosa, have used Monod kinetics due to its simplicity and the availabil-

ity of literature data [11, 24]. Here, Glucose (C) is assumed to be the critical nutrient 
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for the bacterial growth and survival. The convection-diffusion-consumption is solved 

for steady state by assuming 
𝜕𝐶

𝜕𝑡
= 0 . A fixed concentration inlet ‘Gini’ is used at the 

inlet boundary, x = 0 and at all other boundaries no-flux boundary condition is used. 

We use a fixed number of iterations, large enough to let the solutions converge. The 

values used in the simulation are listed in table 1. 

Table 1. Parameter values used in the biofilm simulations. (𝑔𝑏is the quantity of biomass, ex-

pressed in grams) 

Parameter Value 

Length of domain [11] 750 x 10-6 𝑚 

Height of domain [11] 450 x 10-6 𝑚 

Number of grids in FiPy simulation 1250 x 750 

Initial glucose concentration, 𝐺𝑖𝑛𝑖  [11] 3 𝑔 𝑚−3 

Initial mass of bacteria, 𝐵𝐶  [11] 1.315 x 10-13 𝑔𝑏 

Half-saturation coefficient, 𝐾𝑠 [11] 2.55 𝑔 𝑚−3 

Diffusion coefficient, Ds  2.52 x 10-6 𝑚2ℎ−1 

Specific growth rate, 𝜇𝑚  [11]  0.3125 ℎ−1 

Mass yield coefficient, Y [11] 0.45 𝑔𝐵 𝑔
−1 

Metabolic maintenance coefficient, m [11] 0.036 𝑔 𝑔𝑏
−1 ℎ−1 

Reynold’s Number, Re 100 

To estimate the parallel performance, we adapt the models developed by Axner et 

al. [25] and Fox [5]. We use Eq. 8 to estimate the time taken to complete the computa-

tion through parallel execution, Tmi, from number of processors (P), the time for se-

quential computation (Ti,s), and the overheads arising within the individual process 

(Toverheads).  The term Toverheads does not include the communication overhead between 

the processes m1 and m2. We introduce an additive term Tcomm which considers the 

overhead from communication between the two processes m1 and m2. Thus, Eq. 8 is 

now modified as Eq.9 which estimates the total time ‘T’ taken for the computation of 

both the processes, where the i in Tmi indicates the process number.    
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𝑇𝑚𝑖 =
𝑇𝑖,𝑠
𝑃
+ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠 

  (8) 

𝑇 = 𝑇𝑐𝑜𝑚𝑚 +∑𝑇𝑚𝑖
1,2

 
  (9) 

Now we estimate the fractional load imbalance on each processor using the model 

developed by Alowayyed et al [16]. Consider tj,i , the time taken by processor j working 

on process i to complete the computation. When the load is distributed properly, that is 

when the domain decomposition and cell data allocation to processors is done evenly, 

we have t1,i = t2,i = t3,i =….= tP,i  . However, due to heterogenous cell distribution in the 

domain and differences in spatial grid smoothness such a scenario is not possible. Thus, 

the fractional load imbalance fl,i is calculated depending on the average execution time, 

<ti> and maximum processor execution time 𝑡𝑖
𝑚 using equation 10. The speed up and 

parallel efficiency are quantified using Eq.11 and Eq.12 respectively. 

 

𝑓𝑙,𝑖 =

(

 
 
(𝑡𝑖
𝑚 − (

𝑇𝑖,𝑠
𝑃
))

𝑇𝑖,𝑠
𝑃

)

 
 
=

𝑡𝑖
𝑚

< 𝑡𝑖 >
− 1 

 

        (10) 

𝑆𝑝 =
𝑇𝑖,𝑠
𝑇𝑝
  

     

                                          (11) 

𝐸𝑝 =
𝑆𝑝

𝑃
 

     

                                          (12) 

3 Results and Discussion 

Initially, we fix the domain size, the mesh smoothness and run the simulations on a 

single processor (sequentially) to analyze the velocity patterns and concentration con-

tours developed in the domain containing a mature biofilm structure shown in figure 

1c. As shown in figure 2, the simulations can predict the changes in velocity and glu-

cose concentration in the vicinity of the cells.  

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_38

https://dx.doi.org/10.1007/978-3-319-93698-7_38


7 

  

Fig. 2. Simulations on mature biofilm structure, (a) fluid dynamics simulation result showing the 

normalized velocity within the domain and (b) CDC simulations showing the normalized glucose 

concentration distribution in the domain. 

 

All the simulations in the study were carried out on 3.20 GHz Intel® Core™ i7-

6900K CPU running Ubuntu Linux 14.04. The parameters shown in table 1 were used 

for all the simulations, hence, the effects of change in domain size  or change in fluid 

flow characteristics were not analyzed in the study. The total time taken for the simu-

lations to converge to steady state were 845 s and 145 s for the fluid dynamics and CDC 

simulations respectively. There will be a communication overhead between the pro-

cesses even when running sequentially, as indicated by the additive term in Eq. 9. In 

the next step, we simulated the fluid flow and nutrient diffusion patterns for the various 

stages of biofilm developments shown in figure 1. We restrict ourselves to these three 

stages of growth since after stage 3, due to nutrient depletion, there is a possibility of 

bacterial dispersion from the biofilm. In this study, parallel performance analysis during 

the biofilm dispersion process is not included due to the possibility of multiple struc-

tural configurations during the dispersion process.  We varied the number of processors 

P from 1 to 16. The results of the simulations are shown in figure 3. We observed a 

plateauing of the computation time as the number of processors increased. This is due 

to the increase in overhead between the individual processors with increase in parallel-

ization. Also, an interesting observation is that the stage 2 biofilms required longer pro-

cessing time than stage 3 due to the larger number of mesh elements required to simu-

late stage 2 as shown in fig. 3c. The effect arises solely from the quantity of the mesh 

elements and not from the quality of the elements, since all the meshes had the same 

minimal element radius of 0.18. The increase in number of mesh elements could be due 

to the meshing algorithm being dependent on the geometry of the biofilm area. How-

ever, the communication time between the processes did not follow an established 

trend. Since there is always a load imbalance when using parallel processors as shown 

in fig. 4a, the heterogenous distribution of mesh elements would result in variable re-

sponse duration for each processor to the communication signal, thereby causing inef-

ficient inter-process communication. This inefficient communication is evident in the 

mesh-dense stage 2 biofilm simulations, where the mesh decomposition is much more 

heterogeneous. 
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Fig. 3. Parallel performance at different stages of biofilm growth (a) change in computational 

time with increase in parallel processors, (b) change in communication time between processes 

m1 and m2 with increase in parallel processors and (c) number of mesh elements (Ne) used in the 

fluid dynamics simulation. 

 

The estimated fractional load imbalance from the simulations is shown in figure 4(a). 

In general, the load imbalance increased with increasing number of processors, and 

followed a sigmoidal curve pattern indicating the asymptotic nature of the load imbal-

ance. The asymptotic behavior can be explained from the fact that, as the number of 

processors increase, the heterogeneity between the meshes allotted to the individual 

process decreases, resulting in an equilibrium value for fractional load imbalance. Fig-

ure 4(b) shows a decrease in efficiency of parallel computation at higher processor 

counts. This trend is expected since there is always an efficiency loss from intra-com-

munication overheads between the processors. We also infer that, efficiency is a func-

tion of mesh elements and number of parallel processors. The geometry of the stage 2 

biofilm necessitates use of large number of mesh elements to have a refined mesh 

boundary. Therefore, stage 2 biofilm with large number of mesh elements operates at a 

higher efficiency with large number of processors (>8) and underperforms with lesser 

number of processors than its counterparts. Although the fractional load imbalance for 

stage 1 biofilms is significantly higher than stage 2 and 3 biofilms using 4 processors, 

the efficiency for stage 1 biofilms is marginally higher than stage 2 and 3 biofilms due 

to the presence of fewer meshing elements and homogenous element distribution. Thus, 

the average number of mesh elements per processor (Np) determines rate of decrease in 

parallel efficiency. We could therefore write a simplified function, 

𝐸𝑝 = 𝐸𝑝(𝑃, 𝑁𝑒 , 𝑁𝑃)   (13) 

Increase in Np while using large number of processors will therefore result in in-

creased processor efficiency. Practically, this could be done by refining the fluid dy-

namics mesh. However, the mesh refinement should be optimized such that the trade-

off between parallel efficiency and total computation time ‘T’ stays optimal. A similar 

trend is observed with the speed up values since it is indirectly proportional to the par-

allel computation time as shown in Eq. 12.  
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Fig. 4. Parallel efficiency test results, (a) estimate of fractional load imbalance on the processors, 

(b) change in parallel processing efficiency with increase in parallel processors and (c) Speed up 

resulting from change in number of processors. 

4 Conclusion 

We modeled the parallel computation efficiency at different stages of a multi-phys-

ics implementation of biofilm growth. It was found that high parallelization, at initial 

stages of biofilm growth simulations is not needed, since the computational efficiency 

from parallelization is offset by the intra-process overheads. The intermediate stage 

requires more parallel processors to decrease the overall computation time. This is due 

to the presence of large number of mesh elements at this stage. Therefore, as a rule of 

thumb, the number of processors needed to optimize the speed of execution of the entire 

biofilm growth simulation is, (𝑁𝑝)𝑠𝑡𝑎𝑔𝑒1 < (𝑁𝑝)𝑠𝑡𝑎𝑔𝑒2 > (𝑁𝑝)𝑠𝑡𝑎𝑔𝑒3.  We have devel-

oped a simplified function (EP) dependent on the number of processors, total number 

of mesh elements and the mesh elements per processor for optimizing the parallel effi-

ciency in simulating bacterial biofilm growth. 
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