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Abstract. In this paper, we report the implementation and measured
performance of a global simulation of planetary rings on Sunway Taihu-
Light. The basic algorithm is the Barnes-Hut tree, but we have made
a number of changes to achieve good performance for extremely large
simulations on machines with an extremely large number of cores. The
measured performance is around 35% of the theoretical peak. The main
limitation comes from the performance of the interaction calculation ker-
nel itself, which is currently around 50%.

1 Introduction

Our understanding of the structure of planetary rings has been advanced greatly,
mainly through interplanetary missions such as Voyager 1 and 2, and most re-
cently Cassini. They have made a number of findings, including the dynamic
change of small-scale structures of the rings, possibly through complex interac-
tions with satellites. The primary theoretical tool for the understanding of these
findings is fluid models, but many features require more detailed modeling, and
direct simulation of ring particles is necessary.

Most simulations of ring structures have been based on local approximation,
in which we apply the (pseudo-)periodic boundary conditions for both the radial
and angular directions [13].

Rein and Latter (2013) used up to 200k particles to model the viscous over-
stability in Saturn’s rings using this local assumption [10]. Because very long
simulations are necessary, the number of particles has been small. They used
REBOUND [11], an MPI-parallel N-body simulation code. More recently, Ballouz
et al. (2017) [1] used pkdgrav [12] for simulations with up to 500k particles.

Michikoshi and Kokubo (2017) [9] performed global simulations of rings
around the asteroid Chariklo, using 300M particles. This is to our knowledge
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the largest simulation of rings around planets (or asteroids). They have used
FDPS (Framework for Developing Particle Simulator) [6], to parallelize their
calculation code.

Their calculation is probably the first global simulation of rings with the
physical size of the ring particles comparable to that of real ones. They could do
that with still a relatively small number of particles (300M), since the asteroid
and thus rings themselves are small. If we want to model Saturn’s rings, the
necessary number of particles would be much larger. The radius of the A ring of
Saturn is around 1.3 x 10° km. The typical radius of ring particles is 6 m [14],
and the optical depth of the ring is around unity. Thus, we need 10* particles
per km? or around 10'? particles for the radial range of 100 km. With this radial
range, we can model many of the fine features observed by Cassini directly.

In this paper, we describe the result of our effort to perform such extreme-
scale simulations of planetary rings on Sunway TaihuLight, the fastest machine
as of Nov. 2016. Our implementation is also based on FDPS, but we need to
make a number of changes to the code and algorithms to achieve reasonable
performance. As a result, the measured performance of our code, on 1/10 of
TaihuLight (4096 nodes, 16384 processes) is around 31% of the theoretical peak.

The rest of the paper is organized as follows. In section 2, we summarize the
architecture of the Sunway TaihuLight system and its SW26010 processor. In sec-
tion 3, we discuss the usual implementation of N-body code on accelerator-based
systems, and problems of such an implementation on TaihuLight. In section 4,
we describe the algorithms we used on TaihuLight. In section 5, we present the
measured performance on TaihuLight. In section 6, we summarize the results.

2 Sunway TaihuLight

Sunway TaihuLight consists of 40960 nodes, connected by a network with in-
jection bandwidth of 8 GB/s per node. Each node has one Sunway SW26010
processor. The processor consists of four “core groups” (CGs). One CG has one
management processing element (MPE) and 64 computing processing elements
(CPEs). MPE and CPEs are both 64-bit RISC processors and have almost the
same architecture. Both MPE and CPEs have instruction caches. MPE has L1
and L2 data caches, while each CPE only has local data memory (LDM, 64 KB)
and no cache memory. Each CPE can still perform load/store operations to the
main memory, and they can also issue DMA transfers between LDM and the
main memory. The need for explicit control of data movement between LDM
and main memory makes the porting of the existing codes rather complicated.
On the other hand, the possibility of explicit control makes performance tuning
relatively straightforward.

The 64 CPEs in one CG is organized as an 8 x 8 array. The communication
within the array is not mesh but point-to-point or broadcast within the rows or
columns. Thus, extremely low-latency communication can be done within a CG,
and barrier synchronization is also extremely fast.
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Operating system runs on the MPE, and the user program also runs on
the MPE. In order to use CPEs, the user either uses OpenACC or the Athread
library, which is a lightweight thread library designed for the SW26010 processor.

The processor runs with a clock speed of 1.45 GHz. Each CPE (and MPE)
can perform four double-precision multiply-and-add operations, in the form of
a 256-bit wide SIMD operation, in every clock cycle. Thus, the theoretical peak
performance of one processor is 3.016 Tflops, and that of the entire machine
with 40960 processors is 123.5 Pflops. Each CG has 8 GB of DDR3 memory
with theoretical peak transfer rate of 34 GB/s. The B/F ratio is 0.045, much
lower than that of most modern processors (both CPUs and GPUs), which is
in the range of 0.15 to 0.25. Thus, it is critical to minimize the main memory
access to achieve good performance.

3 N-body Algorithms for accelerator-based systems

As we have seen in the previous section, the SW26010 processor has a “het-
erogeneous many-core” architecture. Technically speaking, the instruction-set
architecture itself of MPE and CPE is almost the same, but the absence of
the data cache on the side of CPE makes the programming mode completely
different.

For accelerator-based machines, there have been a number of research inves-
tigations of optimized algorithms for gravitational N-body simulations. Makino
[7] applied the vectorizeation algorithm of Barnes [2] to utilize the GRAPE hard-
ware in combination with the Barnes-Hut tree algorithm. Makino [8] describes
efficient parallel implementation of the Barnes-Hut tree algorithm on GRAPE
cluster systems. This algorithm is then ported to GPGPUs [4] and has been used
on many different systems.

In our FDPS system, the methods to use an accelerator is essentially the
same as those used for GRAPE or GPGPUs in the works described above. In
the original algorithm of Barnes and Hut, the tree structure is used to approxi-
mate the forces from distant particles by the force from their center of mass (or
multipole expansion if higher accuracy is necessary). To calculate the force on
one particle in the original algorithm, the tree structure is traversed to find the
required level of approximation.

In Barnes’ modified algorithm, the tree is traversed not for each particles but
for groups of (nearby) particles, and a so-called “interaction list” is constructed.
Then the calculation of forces on particles in that group is done using this inter-
action list. In this algorithm, tree traversal can be done on a slow general-purpose
processor, while the interaction calculation itself is done on a fast accelerator.

For MPI-based parallelization, we need to distribute particles to MPI pro-
cesses. ORB (Orthogonal Recursive Bisection) has been used on many parallel
implementation of tree algorithms, but we used “Multisection” algorithm, in
which the division of the domain in one dimension is not limited to bisection
but any positive integer. This algorithm has the advantage that it can utilize
non-powers-of-two processors.
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The following gives the overview of the steps of the parallel tree algorithm
on accelerator-based systems:

1. Perform the domain decomposition.
2. Exchange particles between processes so that particles belong to appropriate
processes

3. Construct the local tree structure on each process.

4. Exchange the information of the tree structure necessary to construct a
“global tree” on each process (so called local essential tree).

. Construct the “global” tree from the collected information.

6. For each group of particles, construct the interaction list and perform the
force calculation.

. Integrate the orbits of particles.

8. Go back to step 1.

ot

EN|

Note that the construction of the interaction list and the force calculation
can be overlapped on accelerator-based systems. Thus, if the general-purpose
CPU side is not too slow, this algorithm works extremely well, and can achieve
very high efficiency.

However, in the case of TaihuLight, MPE is too slow, and the construction
of the interaction list cannot be hidden. Moreover, relatively inexpensive cal-
culations such as the construction of the tree also become a large performance
bottleneck. Thus, we need new methods to reduce the calculation cost on the
side of MPE.

On NVIDIA Tesla systems, Bédorf et al. [3] solved this problem by moving
all calculations to the GPU side. However, in the case of the TaihuLight system,
we estimated that because of the very limited main memory bandwidth, just
moving all calculations to CPEs is still not enough. The expected performance
was below 10%.

In the next section, we describe the new algorithms we implemented to
achieve good performance on TaihuLight.

4 New algorithms

In this section, we describe algorithms we modified for simulating a self-gravitating
planetary ring on TaihuLight. What we have implemented are:

1. The re-use of the interaction list over multiple timesteps to reduce the cost
of both tree construction and tree traversal

2. The construction of the tree in cylindrical coordinates to optimize domain
geometry

3. Coordinate rotation to reduce the migration of particles between processors

4. Eliminate the global all-to-all communication for the local essential tree ex-

change
. “semi-dynamic” load balance between CPEs
6. manual tuning of the interaction kernel

ot

In the following, we briefly describe these new methods.
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4.1 The re-use of the interaction list

In the simulation of rings around planets, the timestep is chosen to be small
enough to resolve physical collisions between particles, and thus relative positions
of particles do not change so much in one timestep. This is quite different from
other gravitational many-body simulations such as cosmological simulations, in
which single particle can move a distance comparable to the typical interparticle
distance. Thus, for ring simulations, it is possible to use the same interaction
list for a number of timesteps. This is essentially the same as the “bookkeeping”
method used in molecular dynamics simulations, but we construct not just the
list of particles but the list of particles and tree nodes.

One issue when reusing the same interaction list over multiple timesteps is
that the calculated force can be inaccurate. This can happen when the distance
between a tree node in an interaction list and a particle in the group of particles
corresponding to the list becomes smaller than the distances at which physical
collision occurs or the center-of-mass approximation breaks down for a given
opening criterion of the tree 6 while reusing the list.

We avoid this problem by constructing an interaction list so that it stores all
the particles whose distances from any of the particles in the group are smaller
than a pre-specified search radius as particles, not as tree nodes. By taking a
sufficiently large search radius, we can calculate all the interactions correctly
during the reuse steps. An appropriate value of it depends on the dynamical
properties of a physical system simulated as well as the number of the reuse
steps. In this study, we determine it by performing simulations repeatedly.

This functionality is now provided as an optional feature in our FDPS dis-
tribution.

4.2 Tree and Domain structures on Cylindrical Coordinate

One problem with handling a narrow ring with a general-purpose domain de-
composition algorithm is that the shape of some of the domains can become
highly irregular, resulting in an increase in communication between processes.
Figure 1 shows an example. We can see the domains near the y axis are very
elongated.

The reason why the shapes of domains become irregular is that we are trying
to fit a circle to squares and rectangles. A natural way to apply domain decom-
position is to use polar coordinates and apply divisions in radial and angular
directions.

Conceptually the simplest approach is thus to use polar coordinate (cylindri-
cal in this case) for positions and velocities of particles, and also for coordinates
for constructing the tree structure. Since the ring is narrow, the local distance s
in the Cartesian coordinate (z,y, z) can be approximated by that in cylindrical
coordinate (r, ¢, z).

ds® = da® + dy* + d2* ~ d¢? + dr? + d2?, (1)
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Fig. 1. Schematic figure of domain decomposition by the multisection method in z-y
coordinate. Domains are divided by 16 x 8.
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Fig. 2. Schematic figure of domain decomposition by the multisection method in cylin-
drical coordinate. Domains are divided by 4 x 32.
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when 7 ~ 1. This means that, for domain decomposition and tree construction
and even for tree traversal, we can just use polar coordinates, without any mod-
ification of the algorithm or program itself. The interaction calculation is faster
in Cartesian coordinates and thus Cartesian coordinates should be used.

Figure 2 shows the domain decomposition in cylindrical coordinates. We can
see that all the domains have similar, near-square shapes.

4.3 Coordinate rotation

In any parallel tree algorithm, domain decomposition is done in fixed coordi-
nates, while particles move around. If the distribution of particles is not changing
rapidly, even if particles move, the domain structure does not change much.

Usually, the fraction of particle that move from one domain to another is
relatively small, and the cost of this part is not dominant, since LET exchange
is more costly. However, when we use an extremely large number of processes,
and when the simulated system is a narrow ring, at one timestep many (or all)
particles can move from one domain to another. Consider the case of using 100k
processes for a ring with the aspect ratio of 1:1000. We use a process grid of
10 x 10, 000. Thus, if the timestep per one Kepler period is smaller than 10,000,
all particles in each domain moves to other domain in every timestep, resulting
in very high communication cost.

An obvious solution for this problem is to let the coordinates and domain
structure rotate, so that particles do not move much. If we rotate the coordinates
at the speed of Kepler rotation at the center of the ring, particles at the center
of the ring do not move much. Particles at other radial positions do move, but
at speed much smaller than that of the Kepler rotation. Thus, communication
due to Kepler rotation can be almost eliminated.

Note that we need to (and can) apply this coordinate rotation only at the
steps in which the tree is reconstructed. Thus, the additional calculation cost is
negligible.

4.4 Elimination of all-to-all communication

In FDPS, the exchange of LET (local essential tree) data is done as follows. All
processes have the information of the domain geometry of all other processes,
and thus can determine what information should be sent. Thus, each process first
constructs the necessary data for all other processes, and then all processes send
and receive information through a single call to the MPI_Alltoallv function.

This implementation works fine even for 10k or more processes, but becomes
problematic on large systems like TaihuLight. Even when the implementation of
MPI_Alltoallv is ideal, each process receives at least one particle (the center
of mass of all particles in one process) from each other process. Thus the total
amount of LET data proportional to the number of processes, and thus for a
large enough number of processes this part dominates.
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Conceptually, we can eliminate this global communication, by constructing
the “tree of domains” locally and let only higher-level information be sent to
distant processes.

In the current implementation specialized to narrow rings, we implemented a
very simple two-level tree, in which the second-level tree nodes have all processes
in the radial direction. For example, if we have a process grid of (1000, 10), where
1000 in angular and 10 in radial direction, 10 domains in the radial direction are
combined to one tree node, resulting in 1000 second-level nodes. Only these 1000
nodes exchange their center-of-mass information. All LET information other
than these center-of-mass data of second-level nodes are sent either to other
second-level nodes (and then broadcast to lower-level nodes) or sent directly to
lower-level nodes.

In this implementation, there is still one global communication in the angular
direction, but we can use MPI_Allgather since only the top-level data are sent.
Thus the reduction in the communication is quite significant.

4.5 Load Balance between CPEs

In the force calculation part, in our current implementation, each CPE handles
one interaction list at a time. MPE first prepares a large number of interaction
lists, and then CPEs process them one-by-one. Since both the length of the
interaction list and the number of particles which share one interaction list varies
by a fairly large factor, if CPEs process the interaction lists in a fixed order, a
large load imbalance appears. In order to achieve a better load balance between
CPEs, we applied the following simple algorithm.

1. Sort the interaction lists by their length.

2. Assign the longest 64 lists on 64 CPEs.

3. For each remaining list, assign it to the the CPE with the shortest total
calculation cost.

Since the calculation time of a CPE is quite predictable, this algorithm works
very well.

We could further improve the load balance by multiple CPEs handle one
interaction list, either by dividing the list or the particles which share the list.

4.6 Interaction Kernel

On CPEs, we found the compiler-generated code for the interaction kernel,
even when SIMD operations are used, does not give very good performance.
We rewrite the interaction kernel fully in assembly language, with hand-unroll
and careful manual scheduling. As a result, we achieved more than 50% of the
theoretical peak performance for the kernel.

5 Measured performance

We have measured the performance of our code on TaihuLight with up to 4096
nodes (16384 MPT processes). In this section we present the results.
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5.1 Initial Condition

The ring has central radius of unity in our simulation units and its width is 0.01.
These corresponds to 10° km and 10® km, when we regard this ring as Saturn’s
A ring. In the weak-scaling test, the number of particles per process is 1M, and
in the strong-scaling test the total number of particles is 2G. The mass m and
radius r of particles are given by:

r~3.1x1075(2G/N)"?, (2)
m~ 8.5 x 107 (2G/N)*/?, (3)
where N is the total number of particles. The mass of Saturn and gravitational
constant are both unity. Thus, the orbital period of ring particles is 2.
5.2 Interaction Model

Ring particles interact through mutual gravity and physical inelastic collisions.
We model inelastic collisions by soft spheres with spring and dashpot. Equation
4 gives the definition of the particle-particle interaction.

m;m;
G=srij (rij > reon)
Fi X ] (4)
J mim; mj Tij —Tcoll Tij Vij ’
= + K + r.: (r:: < r
[G 3 m;+m; Tij n 7'?]- v ( o= COH)
with r;; = r; — 7, vij; = v; —v;, r;; = ||ri;||. Here, F}; is the acceleration of

particle ¢ due to particle j, r;; and v;; are the relative position and velocity
vectors, G is the gravitational constant (taken to be unity in this paper), m; is
the mass of particle i, r.,; is the distance at which two particles collide, and 7
and k are parameters which determine the coefficient of restitution. We chose
these parameters so that the coefficient of restitution in the radial direction is
0.5, which is close to the experimental values (e.g. Hatzes et al. [5]).

Particle-particle interaction consists of 9 multiplications, 8 additions, and
one square root and one division operation. The instruction set of Sunway 26010
processor does not include fast approximation for either square root or recipro-
cal square root. So we implemented fast initial guess and high-order convergence
iteration in software. The number of operations in this part is 7 multiplications,
5 additions and two integer operations. Therefore, for particle-cell interactions
the number of floating-point operations is 31, and for particle-particle interac-
tions, which include the repulsive force during physical collisions, is 47. The total
number of floating-point operations is obtained by counting the number of in-
teractions calculated and multiplying them with these number of floating-point
operations per interaction. We ignore all operations other than the interaction
calculation, since as far as the number of floating-point operations is concerned,
the operation count for interaction calculation is more than 99% of the total
operation count.
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5.3 Performance

We used the opening criterion of the tree € of 0.5. The leap frog integrator with
a timestep of 1/128 is used. We use the same interaction list for 64 steps.

To measure the performance, we measure the time for 64 timesteps, including
the time for diagnostics. The execution time is measured by the MPI wallclock
timer, and the operation count is from the counted number of interactions cal-
culated.

measurement QO 3
35% of TP - o >
1o’ e
r: L
g @
g 0]
©
g
L, .2 P
g 10 o
el
10% 10° 104

# of processes

Fig. 3. Performance in Tflops for weak-scaling test. The number of particles per process
is IM. Solid line indicates 35 % of the theoretical peak performance of TaihuLight. Open
circles indicate measured performance.

Figures 3 and 4 show the speed in Tflops for weak- and strong-scaling runs.
Weak-scaling result is almost ideal. Our code runs at around 35% of the theo-
retical peak performance of TaihuLight.

Figures 5 and 6 show the breakdown of the time per timestep. We can see
that even for 16K processes the time for communication is less than 10% of the
total time.

Table 1 shows the detailed breakdown of the calculation time for the case of
a weak-scaling run with 8192 processes. The terms for which the speedup factor
is 64 are performed only once per 64 steps. We can see that the dominant terms
apart from the interaction calculation are “Local Tree update”, “Global Tree
construction”, “Global Tree update” and “Interaction list construction”. The
two “update” terms come from the update of physical quantities of tree nodes,
and the two “construction” terms comes essentially from data copying. All are
of O(N) calculation cost. Due to the rather limited main memory bandwidth of
TaihuLight, it is difficult to further reduce these terms, and therefore we believe
our implementation is close to optimal.
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Fig. 4. Performance in teraflops for strong-scaling test. The number of particles per
process is 2048M. Solid line indicates 35% of the theoretical peak performance of Tai-
huLight. Open circles indicate measured performance.
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Fig. 5. Time per timestep for weak-scaling test.
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Fig. 6. Time per timestep for strong-scaling test.
Table 1. Break down
Operation first step 64 averaged speedup
exchange Particles 0.308 0.00481 64.0
Local Tree construction 0.0568  0.000888 64.0
Local Tree update 0.0195 0.0130 1.5
LET construction 0.00416 6.50 x 10™°  64.0
LET communication 0.0238 0.0128 1.86
Global Tree construction 0.178 0.0141 12.6
Global Tree update 0.0273 0.0165 1.65
Interaction List construction 0.657 0.0103 64.0
Interaction calculation 0.285 0.235 1.21
Others 0.150 0.0156 9.62
Total 1.71 0.323 5.29
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6 Summary and Discussion

In this paper, we report on the implementation and performance of the large-
scale realistic simulation of planetary rings on TaihuLight. We need to apply a
number of changes to the basic algorithms, but except for the manual rewrite of
the interaction kernel in assembly language, all modification of the algorithm is
not specific to the architecture or characteristics of TaihuLight and can be used
on any other machine. The achieved performance is quite satisfactory, more than
1/3 of the theoretical peak performance or more than 60% of the hand-tuned
performance of the kernel itself.

Some of the algorithm developed for this calculation are now available in our
standard distribution of FDPS.
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