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Abstract. Huge lava tubes with an approximate diameter of 65-225m
were found on the surfaces of Moon and Mars in the late 2000’s. It has
been argued that the interior of the caves are spacious, and are suitable
to build artificial bases with habitable features such as constant temper-
ature, as well as protection from both meteorites and harmful radiation.
In line of the above, a number of studies which regard the soft landing
mechanisms on the bottom of the lava tubes have been proposed. In this
paper, aiming to extend the ability to explore arbitrary surface caves, we
propose a mechanism which is able to reach the ceiling of lava tubes. The
basic concept of our proposed mechanism consists of a rover connected
to an oscillating sample-gatherer, wherein the rover is able to adjust the
length of the rope parametrically to increase the deflection angle by con-
sidering periodic changes in the pivot, and thus to ease the collection of
samples by hitting against the ceiling of the cave. Relevant simulations
confirmed our theoretical observations which predict the increase of de-
flection angle by periodically winding and rewinding the rope according
to pivotal variations. We believe the our proposed approach brings the
building blocks to enable finer control of exploration mechanisms of lava
tubes and narrow environments.

Keywords: variable-length pendulum, variable-pivot pendulum, cave
exploration, lava tubes

1 Introduction

A number of lava tubes with diameter of 65-140 m. were found on the Moon [1],
and with diameter 100-225 m., were found on Mars [2,3]. It has been argued
that the interior section of such caves spreads the vertical and the horizontal
directions, possibly bringing appealing features [4,5] such as (1) suitability for
artificial bases in the moon, (2) suitability to build environments with constant
temperature, and (3) protection from meteorites and radiation.

Generally speaking, exploration of lava tubes imply key tasks such as sur-
face exploration, shape acquisition and surface sampling. A number of previous
studies have regarded the exploration using rovers with active suspension [6],
rovers with inflatable wheel which functions as outer wheels [7], the wired cast-
ing manipulator [8], and the wire-enable vertical hole exploration of caves [9].
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Fig. 1. Basic concept of our proposed mechanism. (a) Rover attached to a sampling
actuator over a cave, (b) Basic model of parametric excitation in a pendulum with
variable pivot.

Also, scientific explorations are being planned by the UZUME (Unprecedented
Zipangu (Japan) Underworld of the Moon Exploration) Project.

In this paper, we propose a mechanism to enable the wire-based sampling
of the ceiling of lava tubes and underground cave-like channels. Our mechanism
consists of a variable-length rope connecting a rover to an oscillating mass under
periodically varying length and pivot. The basic concept of our mechanism is
depicted by Fig. 1, in which it becomes possible to increase the deflection an-
gle by adjusting the length of the rope parametrically, extending the concept
of variable-length pendulum to consider periodically changing pivots. Whereas
variable-length pendulum [10-15] and vertically oscillating supports [15-24] have
been studied widely, the study of periodic change of the pivot in the pendulum,
and its application to space exploration mechanisms, has received little atten-
tion. Simulation results confirmed that the angular displacement increases by
using the parametric excitation under pivotal changes. Our contributions are as
follows:

— the framework which enables the modeling of parametric excitation with
periodically varying length and pivot, and

— simulations to show the performance in terms of increase of angular displace-
ment in the order of seconds.

Our proposed approach offers building blocks to realize a versatile class of
exploration mechanisms which are not only able to gather samples from the
ceilings of cave-like channels, but also able to reach the ceilings efficiently and
flexibly. Our method also has the potential to be used in the narrow and harsh
environments, to allow studies in space volcanism. Finally, by considering the
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periodic change of pivot and length explicitly, it becomes possible to model
complex structures enabling finer control of oscillating behaviours.

2 Proposed Mechanism

2.1 Basic concept

Parametric excitation implies the periodic explicit variation of a parameter in
a dynamical system. For instance, in the context of a spring-mass system, the
parametric excitation occurs when parameters such as mass, spring constant, or
damping coefficient vary periodically. In this section, we describe the theoretical
framework to allow parametric excitation of our proposed mechanism.

In the context of a swing oscillation, the equation of motion of a general
pendulum that consists of a lumped mass suspended by a rigid massless rod
from a pivot is derived from the angular momentum as follows:

%( 120) = —mglsin(0) (1)

where:

g is the constant due to gravity,
l is the length of the rigid massless rope, and
m is the lumped mass,
0 is the angular displacement with respect to the pivot and the vertical axis.

The above definition can be simplified as follows:

F(0,1) = 6(t) + %ié(t) + %sin@(t) =0 (2)

In order to enable the angular displacement under conditions of change in the
pivot, we allow the pendulum to have variable length according to the position
of the pivot. This scheme is applicable to model mechanisms able to sample the
ceiling of convex caves, as shown by Fig. 1.

For simplicity and without loss of generality, we assume the simplified model
as shown by Fig. 1-(b), which represents the main key features of mechanisms
able to sample convex caves. Further extensions are possible by considering
polygonal shapes with more than four vertices. The study of such environments
are expected to be realized in a future work.

2.2 Piecewise Pendulum Mechanism

The key idea of our approach is to model a pendulum with variable length and
pivotal variations by periodically and conditionally winding and rewinding the
rope, in the presence of the ceiling of a vertical hole, which results in the exci-
tation of the deflection angle 6, and the modeling through piecewise pendular
governing equations.

In order to exemplify the above described mechanism,
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Fig. 2. Angular displacement as a result of winding the rope. (a) Winding behaviour,
and (b) Angular displacement according to the winding phase.

— Fig. 2-(a) shows examples of the phases of the Winding behaviour of a pen-
dulum in a simplified cave model,

— Fig. 2-(b) shows the angular displacement corresponding to the phases of
the Winding behaviour of Fig. 2-(a)

By observing Fig. 2-(a) and Fig. 2-(b) one can note the following facts:

— the lower and upper bound of the length of the rope is [Lsport, Ll,mg],

— starting with phase 1, from the left, there exists 6 piecewise phases in the
pendulum motion, in which each phase is associated with the angular dis-
placement curves depicted by Fig. 2-(b).

Along with the above observations, it is important to note that the angular
displacement is a piecewise function of time resulting from the numerical solu-
tions of the governing equations for each phase %, for i = {1,2,3,...6}; and each
solution of displacement curve of the phase i is subject to angular and velocity
constraints with respect to the previous phase i — 1.

Concretely speaking, to give a clear description of the above remarks, the
angular displacement of the i-th phase can be computed by solving the governing
equations of the following classes:

(1) Governing equations along the downward,

92‘ — SOQI’U@ F(Hi, lz) =01\l = f(lifl, €, H) (3)
subject to
t> 71
91’(%‘—1) = 9i—1(Ti—1)
i(ri—1)li = 051 (Ti—1)lia

(2) Governing equations along the trajectory,
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92' — Soel'ue F(@l, li) =011[;= f(lifl, €, H) (4)

subject to

t> T

0i(i—1) = 0i—1(Ti-1)
éi(ﬂ‘fl) = éi—l(Tz;l)

, where the above subscripts are defined as follows:

— 6, is the angular displacement of the i-th phase with respect to the pivot
and the vertical axis,

— 0, is the angular velocity of the i-th phase with respect to the pivot and the
vertical axis,

— é‘i(n_l) is the angular velocity of the i-th phase at time 7;,_; with respect
to the (¢ — 1)-th phase,

— [; is the length of the rope during the i-th phase of the pendulum,

— € is the amount for winding and rewinding,

— H is the height of the vertical hole (assuming a rectangular shape of the
ceiling cave),

— f:(li—1,6, H) = I; is a function mapping from the length of the rope of the
previous phase (i — 1) to that of the current phase ¢, and considering the
winding/rewinding € as well as the height H of the vertical hole,

— 7; is the time a constraint on angular displacement 6; or angular velocity 6,
holds true.

The key difference between Eq. 3 and Eq. 4 is the location of the ball. Whereas
Eq. 3 is used to constrain the pendular motion along the downward direction,
Eq. 4 is used to constrain the motion in arbitrary points along the trajectory. In
line of the above, two relevant instances to compute 7; are as follows:

7 = {t|0; = 0} (5)

, where 7; is the time at which the pendulum reaches the downward vertical,
and

7 = {t|0; = 0} (6)

where 7; is the time at which the pendulum reaches a point closest to the
upward vertical.

Thus, by the descriptions of Eq. 3 and Eq. 6, it is possible to allow modeling
piecewise pendular displacement curves considering the continuity in time, angu-
lar displacement and angular velocity. Furthermore, by introducing the function
f(), it is possible to allow variable-length pendulums under pivotal changes.
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Fig. 4. Basic Concept to compute Rewinding Time

2.3 Winding and Rewinding

Winding (rewinding) aims at shortening (lengthening) the length of the rope
by a small constant. Because winding and rewinding are unrealizable instanta-
neously, we modeled the operation of the pendulum to consider the winding and
rewinding time into account. Thus, in line of the above descriptions, computing
the timing for winding and rewinding is computed by difference and comparison
to a threshold as shown by Fig. 3, in which:

— The initial value of T}, is the difference between the time to reach the down-
ward position and the rewinding time.

— The initial value of T, is the difference between the time to reach zero speed
and the winding time.
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Fig. 5. Patterns of parametric excitation in our proposed mechanism.

2.4 Parametric Excitation patterns

Since the basic pendulum model is unable to handle cases in which the pivot is
variable, and in order to study the angular displacement under diverse winding
and rewinding scenarios, we present four patterns as depicted by Fig. 5 to en-
able the excitatory oscillation through a variable length pendulum with pivotal
changes, as follows:

Pattern 1 The first pattern in Fig. 5-(a) implies the periodic winding and
rewinding of the rope within the region corresponding to the shortest length of
the rope. The solutions of the displacement curves are obtained by Algorithm
1, in which four piecewise displacement curves are obtained by regulating the
length I; for each phase, for i = {1,2,3,4}. Note that winding occurs just after
phase 1, and rewinding occurs just after phase 2.

Pattern 2 The second pattern in Fig. 5-(b) implies the periodic winding and
rewinding of the rope within the region corresponding to the longest length of the
rope. Here, the solutions of the displacement curves are obtained by Algorithm 2,
where three piecewise displacement curves are obtained by regulating the length
I; for each phase, for i = {1,2,3}. Note that winding occurs just after phase 2,
and rewinding occurs just after phase 3. Also, note that phase 2 is composed of
the motion from the position in the downward vertical to the position where the
angular speed is zero, and viceversa.

Pattern 3 The third pattern in Fig. 5-(c) implies the periodic winding and
rewinding of the rope within the region corresponding to both the shortest and the
longest length of the rope. The solutions of the displacement curves are obtained
by Algorithm 3, in which four piecewise displacement curves are obtained by
regulating the length [; for each phase, for i = {1,2,3,4}. Note that winding
occurs just after either phase 1 or phase 3, and rewinding occurs just after
either phase 2 or phase 4.
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Pattern 4 The fourth pattern in Fig. 5-(d) implies the periodic winding and
rewinding of the rope within the region corresponding to both the shortest and
the longest length of the rope under sinusoidal stimuli. The solutions of the
displacement curves are obtained by Algorithm 4, in which two piecewise dis-
placement curves are obtained by regulating the length [; for each phase, for
i = {1,2}. Note that winding occurs as a consequence of periodic stimuli of the
cosine function.

Algorithm 1 Pattern 1
1: procedure

2: T4 < 0, 94(7’4) — (90, 94(7’4) +~— 0

3: for m+ 1to M do

4: 01,71« Solve F(01,11) =0 ‘ I 4 Liong +€¢/2
St t > 74 AOL(14) = 04(74) A O1 (1) = 04(74)
T = {t|91 = 0}

5: 02,72 « Solve F(0,15) =0 ‘ =1, —e—H
s.t. t 2 A 02(7‘1) = 91(7’1) A 92(71)12 - él(Tl)ll
T9 = {t|92 ES 0}

6: 03,73 < Solve F(0s,l5) = 0 ‘ Iy =1y +¢
s.t. t > 1o Al3(12) = O2(12) A 93(72) = é2(72)
T3 = {t|93 = 0}

7 01,71 < Solve F(04,14) = 0 ‘ L=0h

4

s.t. t > 73 AO4(13) = 03(73) A 0a(73)ls = O3(73)l3

T4 = {t|04 = 0}
8: end for
9: end procedure

3 Results and Discussion

To evaluate the evolution of the deflection angle and the behavioural repertoire
of the parametric excitation in the previously introduced winding and rewinding
patterns, Fig. 6 shows the oscillation patterns of mass m assuming the longest
length of the rope Liong = 2 m., the shortest length of the rope lspore = 1,
the initial displacement 6, = 5, the gravity constant g = 9.8066, the length of
wind-rewind € = 0.2 m. Fine tuning the above parameters is out of the scope of
this paper, and is left in our future agenda.
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Algorithm 2 Pattern 2
1: procedure

2: 73 < 0, 93(’7’3) — 90, 93(’7’3) «— 0,13 + Llong
3: for m+ 1to M do
4 01,71 < Solve F(01,11) =0 ‘ L ls+e
s.t. t > 13 A 01 (13) = 05(13) A 01 (73) = 05(73)
T = {t|91 ES 0}
5: 02,72 < Solve F(0a,12) = 0 ‘ lo=1, — H
st.t>m A 92(7‘1) = 91(’1’1) N 92(71)12 = él(Tl)ll
T9 = {t|92 ES 0}
6: 03,73 < Solve F(0s,l5) = 0 ‘ ly=lp— e+ H

s.t. t > 1o Al3(12) = O2(12) A 93(72) = 92(72)

73 = {t|63 = 0}
7: end for
8: end procedure

In Fig. 6, the following can be observed:

— The x-axis denotes the time (in seconds), and

— The y-axis denotes the angular displacement (in degrees)

— The red marks at the top of Fig. 6 (a)-(c) denote the oscillations which occur
when the longest part of the rope achieves the maximal deflection angle.

— Conversely, the blue marks at the bottom of Fig. 6 (a)-(c) denote the oscil-
lations which occur when the shortest part of the rope achieves the minimal
deflection angle.

— Thus, in line of the above observations, red (blue) marks indicate positive
(negative) maximal (minimal) angular displacement of 90 degrees (-90 de-
grees)

In the context of exploration of lava tubes and caves, minimal negative angu-
lar displacements are desirable since they imply the ability to reach the ceiling of
the cave. Thus, for practical realizations, reaching -90 degrees with minimal time
and effort is highly desirable. In line of the above requirements, by observing Fig.
6, we note the following facts:

— In all figures, the deflection angle increases as a function of time,

— Pattern 1 and Pattern 3 require less time to achieve a deflection angle equiv-
alent to -90 degrees or more.

— Among the four described patterns in Fig. 6, Pattern 4 requires more time
to achieve a deflection angle equivalent to -60 degrees, in which achieving
minimal angular displacements depends on the amount of rewinding.
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Algorithm 3 Pattern 3
1: procedure

2: T4 < 0, 94(’7’4) — 90, 94(’7’4) — 0,14 + Llong
3: for m <+ 1to M do
4 01,71 < Solve F(01,11) =0 ‘ Lo lyite
st t > 74 A 01 (1a) = 04(74) A Oy (14) = 0a(72)
T = {t|91 = 0}
5: 02,72 < Solve F(0a,12) = 0 ‘ lo=1, —c—H
2
s.t. t Z T1 AN 92(7‘1) = 91(’1’1) A\ 92(71)12 = él(Tl)ll
T9 = {t|92 = 0}
6: 03,73 < SOel’Ue F(93,l3)20‘l3:l2+e
3
s.t. t Z T2 AN 93(7‘2) = 92(7’2) AN 93(7'2) = éQ(TQ)
3 = {t[03 = 0}
7 04,7’4(— SO@l’UeF(94,l4):O‘l4:lg—6+H
4

st.t>13 A 94(7‘3) = 93(7'3) A 94(7—3)14 = 93(73)l3

T4 = {t|(9.4 = 0}
8: end for
9: end procedure

— Among the four described patterns in Fig. 6, Pattern 1 shows the simplest
operability and the ability to achieve -90 degrees in less than 60 seconds.

The above observations confirm that the deflection angle is increased by the
parametric excitation, and that the deflection angle reaches -90 degrees when
the rope becomes shortest. These results offer the possibility to control the im-
pact to the ceiling of convex caves with finer accuracy, which is in line of our
future agenda. Also, the above settings are representative to construct sampling
mechanisms in small-scale caves, and in our future work, we aim at evaluating
the above winding strategies in an experimental scenario.

4 Concluding Remarks

We have proposed a mechanism to reach the ceiling of lava tubes by connecting
a rover to an oscillating sample-gatherer, in which the rover is able to adjust the
length of the rope parametrically to increase the deflection angle by considering
periodic changes in the pivot, and thus to enable the collection of samples by
hitting against the ceiling of the cave. Relevant simulations have shown that the
deflection angle increases with time, and that there exists oscillating patterns
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Algorithm 4 Pattern 4

1:
2:
3:
4:

6:
7

procedure )
Ty < 07 92(’7’2) — 90, 92(’7’2) ~— 0
for m«+ 1to M do
91,7’1 «— Solve F(917l1) =0 ‘ ll — Llong — ECO$<2 g (t — 7'2))
01 2 long
st.t>7 A 91(7‘2) = 92(7’2)/\
. € . €
91 (7—2)<Llong - 5) = 92(7-2) (Lshort - 5)
T = {t|91 = 0}
92 Ty < Solve F(92 lg)ZO ‘ lQ(-L»hm«t—ECOS(Q g (t—Tl))
’ 02 ’ ° 2 Lshort
st.t>m /\92(7‘1) = 91(7’1)/\
. € . €
92(7—1)<Lsh07‘t - 5) - 91 (Tl)(Llong - 5)
T2 — {t|92 = 0}
end for

end procedure

archiving a deflection of -90 degrees in the order of seconds when the rope be-
comes shortest. Our proposed mechanism enables the building blocks to model
versatile sample-gatherers of cave surfaces which perform efficiently. In our fu-
ture agenda we aim to study the finer control of exploration mechanisms of lava
tubes and narrow environments.
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