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Abstract. Developments in high performance computing (HPC) has today 

transformed the manner of how computational hydrodynamic (CHD) sim-

ulations are performed. Till now, the message passing interface (MPI) re-

mains the common parallelism architecture and has been adopted widely 

in CHD simulations. However, its bottleneck problem remains for some 

large-scale simulation cases due to delays during message passing 

whereby the total communication time may exceed the total simulation 

runtime with an increasing number of computer processers. In this study, 

we utilise an alternative parallelism architecture, known as PGAS-UPC, 

to develop our own UPC-CHD model with a 2-step explicit scheme from 

the Lax-Wendroff family of predictors-correctors. The model is evaluated 

on three incompressible, adiabatic viscous 2D flow cases having moder-

ate flow velocities. Model validation is achieved by the reasonably good 

agreement between the predicted and respective analytical values. We 

then compare the computational performance between UPC-CHD and 

that of MPI in its base design in a SGI UV-2000 server till 100 processers 

maximum in this study. The former achieves a near 1:1 speedup which 

demonstrates its efficiency potential for very large-scale CHD simulations, 

while the later experiences slowdown at some point. Extension of UPC-

CHD remains our main objective which can be achieved by the following 

additions: (a) inclusions of other numerical schemes to accommodate for 

other types of fluid simulations, and (b) coupling UPC-CHD with Amazon 

Web Service (AWS) to further exploit its parallelism efficiency as a viable 

alternative.  

 

Keywords: parallel computing; viscous incompressible laminar flow; MPI; 
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1 Introduction 

Computational hydrodynamic (CHD) simulations has become a useful tool for engineers 

and scientists to accelerate their quantitative understandings of physical, chemical and 

even biological processes. For example, CHD has been coupled with the multiscale per-

turbation analysis to numerically resolve for various properties at the varying scales 

which can be difficult to compute analytically (Dalwadi et al., 2015, 2016; Chang et al., 

2017). Other CHD works include flow simulations in tight membrane spacers to better 

understand the physics of membrane fouling and flow short-circuiting (Jajcevic et al., 

2013; Bucs. et al., 2014; Sousa et al., 2014). Typically, a large-scale CHD simulation 

run with high performance computing (HPC) inclusion requires proper management of 

the parallelization algorithm to achieve optimization. For example, a 100 million two-

dimensional (2D) mesh involving three important equations (continuity and momentum 

equations only) result in an approximate 600 million cell information to be managed dur-

ing each iterative step. Data sharing among computer processers, i.e. threads, is una-

voidable in CHD mesh-bounded numerical domains which underlines the difficulty to 

achieve optimization.  

 

At present, the message passing interface (MPI) architecture remains the most pop-

ular parallelism option. Examples include the utilisation of MPI with a million cores by 

Balaji et al. (2009) to thoroughly examine its scalability, and many others. At the same 

time, difficulties have also been reported when designing MPI applications for consider-

able number of threads with escalated levels of memory hierarchy (Gourdain et al., 

2009; Jamshed, 2015). Thus, the question remains if MPI can effectively accelerate 

CHD simulations with the availability of computer threads. The answer is complex as it 

depends on a multitude of factors which include: (a) type of numerical scheme imple-

mented, (b) size of computational domain, (c) type of flow problem analysed, and most 

importantly (d) the domain decomposition algorithm which determines the distribution of 

the threads within the numerical domain, i.e. how many sub-domains are assigned to 

each thread after decomposition. We underline that pointer (d) is most significant in af-

fecting the speedup of CHD simulation runs.  

 
In this study, we adopt an alternative parallelism architecture for CHD simulations by 

coupling the Partitioned Global Address Space (PGAS) computing concept with Berke-

ley’s Unified Parallel C (UPC) compiler (Chen et al., 2003) as the programming lan-

guage. Two key advantages are expected with PGAS: (a) locality in the shared memory 

structure which facilitates the ease of use, and (b) data layout control of MPI’s which 

enables performance scalability. We note that the PGAS architecture has been utilised 

before (Johnson, 2006 and Simmendinger. et al., 2011). However, to the best of our 

knowledge, coupling CHD simulations with the PGAS architecture has been limited by 

far. It is also worth noting that no porting of the various computer algorithms/architec-

tures is carried out in this study. Rather, the above-mentioned advantages are already 

inherent in the adopted parallelism architecture of PGAS-UPC. The key objective is to 

evaluate the viability of harnessing PGAS-UPC as an alternative to accelerate large-
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scale CHD simulations, at least by achieving the same parallelism performance as that 

of MPI’s in its base design.  

 
We first develop UPC-CHD by coupling the PGAS-UPC architecture with the 2-step 

explicit numerical scheme from the Lax-Wendroff family of predictors and correctors. 

UPC-CHD is then examined on three incompressible, viscous and adiabatic two-dimen-

sional (2D) flow cases having moderate velocities under laminar conditions. Validation 

of UPC-CHD is achieved by the good agreement between the respective analytical and 

predicted values. We then demonstrate how UPC-CHD provides early indication of its 

parallelism efficiency with 100 computer threads maximum in this study as our first initi-

ation. Finally, this paper is structured as follows. In Section 2, we describe the numerical 

scheme implemented in UPC CHD. This is followed by describing UPC-CHD develop-

ment with the adopted PGAS computing concept in Section 3. The parallelism perfor-

mance of UPC-CHD is then examined in Section 4. Finally, Section 5 describes the 

salient pointers as obtained from this study.  

2 Governing equations 

To fully describe the unsteady 2D behaviour of an incompressible viscous fluid under 

laminar adiabatic flow conditions, we adhere to (1) which compactly conserves the mass 

continuity, momentum flow and energy equations (Anderson, 2009). 

 

𝜕𝑄

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
=

𝜕𝐺𝑉𝑥

𝜕𝑥
+

𝜕𝐺𝑉𝑦

𝜕𝑦
        (1) 

where 𝑄 is the conservative temporal term, 𝐹 and 𝐺 are the convective flux vectors in 

the x and y directions respectively, 𝐺𝑉𝑥 and 𝐺𝑉𝑦 are the viscous flux vectors in the x and 

y directions respectively, and 𝑡 is time. 

 

The exact forms of 𝑄, 𝐹, 𝐺, 𝐺𝑉𝑥 and 𝐺𝑉𝑦 are described in (2) as shown. 
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, 𝐺𝑉𝑦 = ʋ

[
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𝑢𝑦

𝑣𝑦
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 (2) 

where 𝑢 is the horizontal velocity [𝐿𝑇−1], 𝑣 the vertical velocity [𝐿𝑇−1], 
𝑝

𝜌
 the pressure 

divided by the fluid density [𝐿2𝑇−2], 𝐸𝑡 the total energy per unit mass [𝐿2𝑇−2], ʋ the 
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kinematic viscosity [𝐿2𝑇−1], µ the dynamic viscosity [𝑀𝐿−1𝑇−1], 𝜏𝑥𝑥 and 𝜏𝑦𝑦 the normal 

stresses [𝑀𝐿−1𝑇−2], and 𝜏𝑥𝑦 and 𝜏𝑦𝑥 the shear stresses [𝑀𝐿−1𝑇−2].  

3 Numerical discretization 

To resolve (1) over a 2D numerical domain of regular grids, we adhere to the following 

numerical schemes (Kermani and Plett, 2001) for the respective terms in their discre-

tized forms: (a) two-step explicit approximation from the Lax-Wendroff family of predic-

tors-correctors for 𝑄, (b) Roe linear approximation with the 3rd-order upwind biased al-

gorithm for 𝐹 and 𝐺, and (c) 2nd-order central differencing for 𝐺𝑉𝑥 and 𝐺𝑉𝑦.  

 

The implemented numerical schemes are then examined for the following CHD 

cases, namely (a) Blasius boundary layer, (b) Poiseuille’s flow, and (c) Couette’s flow. 

In UPC-CHD, there are four boundaries of concern for a simplified 2D numerical domain 

as illustrated in Fig. 1. The exact conditions (BCs) adopted for these boundaries in each 

CHD case are then described in Table 1.  

 
Fig. 1. Boundaries of concern for a simplified 2D numerical domain adopted in UPC-

CHD 

Table 1. Exact boundary conditions (BCs) implemented in UPC-CHD for respective CHD 
cases with reference to Fig. 1. 

BCs 
Blasius boundary layer 

(CHD case A) 
Poiseuille’s flow  
(CHD case B) 

Couette’s flow 
(CHD case C) 

Inlet 

u = freestream velocity  

v = 0 

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2 

u = freestream velocity 

v = 0 

𝑝

𝜌
 = fixed value 

u = freestream velocity 

v = 0 

𝑝

𝜌
 = fixed value 

Outlet 

𝑑𝑢

𝑑𝑥
= 0 

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2 

𝑑𝑢

𝑑𝑥
= 0 

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2 

𝑑𝑢

𝑑𝑥
= 0 

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2 

Top u = freestream velocity  
u = 0 

v = 0 

u = freestream velocity  

v = 0 

Bottom u = 0; v = 0 u = 0; v = 0 u = 0; v = 0 
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4 UPC-CHD model development 

Within UPC-CHD, we introduce the following procedures to achieve our parallelization 

objective. Firstly, we identify the time-consuming computational functions and data de-

pendences involved. We then implement appropriate algorithms for data divisions and 

storage as based on the required data dependences and model workflow. There are 

three components to fully describe UPC-CHD, namely (a) implemented computational 

structure, (b) domain decomposition and data storage algorithms, and (c) unique work-

sharing function.  

 

(a) Computational structure 

For each node within the numerical domain (Fig. 1.), the flux predictor at the (𝑛 + 1/2) 

time level is first computed followed by the flux correction at the (𝑛 + 1) time level. Both 

the flux predictor and corrector are defined within a nested loop and the complexity of 

the nested loop algorithm is defined as 𝑂(𝑁2), where 𝑁 is the number of nodes in a 

singular direction. The original nested loop is divided into multi sub-loops to prevent data 

conflicts. After every new nested loop, a synchronization point is inserted using an UPC 

function, termed as upc_barrier, to synchronize all threads before proceeding to the next 

function. We note that the fluxes predictions and correctors at the respective time steps 

contribue to the most time-consuming functions in the algorithm which will be addressed 

in the following sub-section. 

(b) Domain decomposition and data storage algorithms 

The 2D numerical domain of 𝑁 by 𝑁 size (Fig. 1.) is first divided into a distinct number 

of computational rows. A defined group of rows then constitutes to a sub-domain having 

affinity to a computer thread. With 𝑇 number of threads, we consider the following pro-

tocol for domain decomposition: (i) if N is divisible by T, then there will be 
𝑁

𝑇
 sub-domains 

and each contains the same number of rows, or (ii) if N is not divisible by T, then the first 

𝑖𝑛𝑡(
𝑁

𝑇
) sub-domains contain the same number of rows, the last sub-domain contains the 

remaining rows. For example, if 𝑁 =  8 and 𝑇 =  3 then the first 2 threads handle the 

first two sub-domains with three rows each whereas the last thread contains the third 

sub-domain with two rows. At this moment, UPC-CHD is only considering an ideal 

square-shaped numerical domain as our first approach. The above-discussed details is 

most critical to manage the time-consuming functions in the algorithm in terms of the 

data distribution in the sub-domains which directly affect the total communication time. 

The following questions remain to be further investigated: (i) ideal number of sub-do-

mains to be deployed with respect to the number of computer threads available, and (ii) 

the ideal number of cores to be used.  

Finally, the respective threads assigned to the first and last sub-domain are termed 

as 𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡 and 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑛𝑑 , and we note that the domain decomposition is first per-

formed on thread 0. The last thread is termed as (𝑇 − 1). The required fluxes 
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(𝑄, 𝐹, 𝐺, 𝐺𝑉𝑥, 𝐺𝑉𝑦) for each computational node within the domain are computed via a 

row-by-row method by utilising the respective data values from the two upper and two 

lower rows. To minimize the communication time involved, each sub-domain is directly 

affiliated with thread 𝑇𝑖 by using the blocked-cyclic technique as illustrated in Fig. 2. We 

should note that the only exceptions for 𝑇𝑖 to access data outside of its assigned sub-

domain are restricted to the latter’s respective first and last rows.   

 
 

Fig. 2. Simplified illustration of domain decomposition and data storage methodology 
introduced for a 2D numerical domain of 𝑁 by 𝑁 size; 𝐷𝑖 represents sub-domain 𝑖 having 

affinity to a unique CPU thread 

(c) UPC’s work-sharing function 

In Berkeley’s UPC compiler, the computations within the nested loops, as discussed 

previously in sub-section (a), are distributed using a work-sharing function, termed as 

upc_forall. In UPC, the total number of threads is determined with a UPC identifier, 

THREADS. Each thread is identified by using another identifier, MYTHREAD. With 

upc_forall, all threads with MYTHREAD from 0 to THREADS-1 undergo the same com-

putational steps for the fluxes involved. Each unique thread is designed to compute the 

fluxes on the different sub-domain which is identified by using different 𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡 

and 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑛𝑑 .  

5 Results and discussions 

5.1. Numerical validations 

 

To validate the selected numerical schemes in UPC-CHD, the numerical predictions de-

rived for the three CHD cases are compared with the respective analytical solution: 

(case A) with analytical solution of White’s (White, 1991), (case B) with (3) in the follow-

ing (Munson et al., 2006), and (case C) with (4) in the following (Munson et al., 2006).  

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34


7 

𝑢

𝑈
=

(𝑦2 − ℎ2)

2𝑈𝜐
(
𝜕 (

𝑝
𝜌
)

𝜕𝑥
)    (3) 

 

𝑢

𝑈
=

𝑦

ℎ
−

ℎ2

2𝑈𝜐
(
𝜕 (

𝑝
𝜌
)

𝜕𝑥
) (1 −

𝑦

ℎ
) (

𝑦

ℎ
)    (4) 

where 𝑈 is the freestream velocity [𝐿𝑇−1], ℎ is the total vertical height of the domain [𝐿].  

 The physical dimensions of the deployed numerical domains and the initial flow con-

ditions adopted for the respective CHD cases are summarized in Table 2.  Fig. 3 indi-

cates reasonably good agreement between the predicted and analytical values which 

validates the implemented numerical scheme in UPC-CHD. We note that the maximum 

error quantification in Table 2, particularly for CHD case A, can generally be attributed 

to the following reasons: (i) use of regular meshes for sensitive flow regions whereby 

further refinements are required, and (ii) possible inaccuracies in the imposed boundary 

conditions at the top and outlet boundaries for Case A.  

 

Table 2: Dimensions and initial conditions of deployed numerical domains to validate the 
numerical values obtained for CHD cases A to C 

Parameter Case A Case B Case C 

𝑥 (𝐿) 0.3 0.5 0.5 

ℎ (𝐿) 0.02 0.00016 0.00016 

𝑁 𝑥 𝑁 (number of nodes) 65 x 65 300 x 45 300 x 45 

𝑈 (𝑚/𝑠) 0.05 10 10 

𝑅𝑒 15000 1600 1600 

𝜕 (
𝑝
𝜌
)

𝜕𝑥
 (𝑚𝑠−2) 

0 4700 4700 

𝛥𝑡 (𝑠) 10−6 10−6 10−6 

Total runtime (𝑠) 0.01 0.01 0.01 

Temperature (𝐾) 293.15 293.15 293.15 

𝜐 (𝑚2𝑠−1) 10−6 10−6 10−6 

Maximum error percentage (%) ~25 ~1.7 ~0.5 

 

 

5.2. Parallelism performance 

We adhere to the speedup (𝑆) parameter in (5) to compare the parallelism performance 

of UPC-CHD with that of MPI at their basic designs in a SGI UV-2000 server for all CHD 

cases of very large numerical domains. Technical specifications of the server used are 

described in Table 3. All other conditions from Table 2 are unchanged with the exception 
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for the 𝑁 by 𝑁 parameter for the respective cases: (A) 5000 x 5000, (B) 10000 x 10000, 

(C) 10000 x 10000. 

𝑆(𝑐) =  
𝑇1

𝑇(𝑐)
     (5) 

where 𝑇(𝑐) is the run time of the parallel algorithm, 𝑇1 is the run time of the model which 

employs a singular thread and 𝑐 is the number of computer threads. We first note that 

the parallelism evaluation between UPC-CHD and MPI is confined till 100 computer 

threads maximum in this study due to resources limitations. The key objective is to eval-

uate the adopted parallelism architecture of UPC-CHD as a viable alternative to that of 

MPI’s in its base design.  

Table 3. Technical specifications SGI-UV 2000  

Cluster Node CPUs 
CPU 
speeds 
(GHz) 

Cores 
per node 

Node 
RAM 
(TB) 

Available 
cores 

Communication 
switch 

SGI  
UV-2000 

Intel Xeon  
E5-4657LV & E5-2670 

2.4 16 2 
up to 100 

cores 
InfiniBand 

Shared-memory 

 

 

  

 

Fig. 3. Comparison between analytical and predicted values for respective CHD cases 
in UPC-CHD: (a) Blasius boundary layer, (b) Poiseuille’s flow, and (c) Couette’s flow. 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34


9 

Generally, both UPC-CHD and MPI achieve a near identical 𝑆 values up to c = 16 in 

Fig. 4. However, beyond 16 and up to c = 100 maximum in this study, UPC’s speedup 

is most significant by having a close ratio of 1:1 and reaches nearly 90 times speedup 

for CHD cases A and B (Fig. 4.). 

 

 

Fig. 4. Comparison of parallelism performance between MPI and UPC-CHD: (a) Blasius 
boundary layer – CHD Case A, and (b) Poiseuille’s flow – CHD Case B. 

MPI achieves relatively significant 𝑆 values for Cases A and B in Fig. 4 for 𝑐 beyond 

16. The difference in the 𝑆(𝑐) between Cases A and B is likely ascribed to the difference 

in the number of computational nodes deployed (25 million nodes for Case A and 100 

million nodes for Case B) which affect the number of messages being transmitted within 

each assigned sub-domain. For instance, when running with 𝑐 = 32, MPI achieves 𝑆 

values of 26.7 and 22.5 for Case A and B respectively (Fig. 4.). With MPI, thread 𝑇𝑖 

transmits multiple messages to the neighboring threads at every time-step which in-

clude: (a) velocity and convective fluxes data values in x- and y- directions correspond-

ing to thread 𝑇𝑖−1 and 𝑇𝑖+1, and (b) updated data to the main thread. At the maximum 𝑐 =

100, over 900 messages must be processed in the system at each iterative step, despite 

having only 100 rows of data to be computed for each thread. The respective differences 

in the number of messages to be transmitted in Cases A and B result in different pro-

cessing time for each message. As 𝑐 increases beyond 32 with the MPI architecture, the 

idling time among the threads takes effect whereby each thread must wait for the other 

threads to complete their respective computations at each time step which thus explains 

the gradual stagnation in the parallelism performance after 64 cores and thereafter. Con-

sequently, the total message processing time outweighs the total computational time in 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34


10 

each thread, which restricts the continual speedup with an increasing number of threads 

with MPI. On the contrary, Fig. 4 indicates that UPC-CHD better manages the total mes-

sage processing time beyond 𝑐 = 64 due to its inherent shared memory component 

which enables the threads to access the data within the shared memory via a global 

address.  

The advantage of embedded locality consciousness in UPC-CHD is further investi-

gated in Case C by further examining the impact of thread affinity on its parallelism per-

formance. The computational data of each sub-domain are first stored in-block to gain 

memory locality properties, while the global memory accessing activities are overlapped 

with remote control technique using the split-phase barrier to conceal the synchroniza-

tion cost. To further illustrate this advantage, we evaluate the performance for Case C 

under two scenarios: (a) UPC-A, i.e. UPC with optimizations, and (b) UPC-NA, i.e. UPC 

without optimizations and employs the defaults setting of the GPAS compilers.  

As expected, UPC-NA’s speedup performance is vividly inferior to that of UPC-A’s as 

shown in Fig. 5. For instance, at 𝑐 = 16, the respective 𝑆 values attained are 15.8 and 

4.3 for UPC-A and UPC-NA, respectively.  

 
Fig. 5. Comparison of parallelism performance between UPC-A and UPC-NA for CHD 

case C (Couette’s flow) 

The difference in the attained speedup between UPC-A and UPC-NA can be further 

described from Fig. 6 by using a 3 x 3 numerical domain example having an affinity block 

of 3. In UPC-NA, thread 0 contains the fluxes data of element a, d and g in its local 

memory section whereby d and g belongs to the other threads, whereas in UPC-A, 

thread 0 contains the fluxes data of element a, b and c in its local memory (Fig. 6) 

whereby all three elements belong to the common thread. The observed inferior perfor-

mance of UPC-NA (Fig. 5) is caused by the need for thread 0 to function with non-affinity 

data, i.e. element b in thread 1 and element c in thread 2, which results in longer com-

putational run time for UPC-NA. With 𝑐 = 1, there is only a singular thread which com-

putes the fluxes in the entire numerical domain, and functions only with data having 

affinity with. With an increasing number of threads, the latency issue arises which results 

in less than ideal computational performance. For instance, at 𝑐 = 2 and 4 respectively, 

50% and 25% of the total runtime are attributed to the need to access non-affinity data 

by the respective threads. While the addition of 𝑐 would reduce the amount of global 
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accessing activity in UPC-NA, optimization is still unlikely as observed in Fig. 5. This 

observed behavior for 𝑆 needs to be further investigated.  

 
Fig. 6. Schematic representation of UPC-NA (left) and UPC-A (right) concepts 

In summary, we recommend distributing the array of data in contiguous blocks as 

demonstrated in UPC-A, which enables each thread to attend to a system of elements 

as dependent on the number of threads available. We hypothesize that the proposed 

UPC-PGAS architecture without any affinity optimization is likely unsuitable in acceler-

ating the speedup performance when compared with to that of MPI’s.   

6 Conclusion 

An alternative parallelism architecture, which couples the PGAS computing concept with 

Berkeley’s UPC compiler, is developed for large-scale computational hydrodynamic 

(CHD) simulations. The parallelism model developed is termed as UPC-CHD. As our 

first initiation, UPC-CHD is examined on three incompressible, adiabatic and viscous 2D 

flow cases having moderate flow velocities. Varying numerical schemes are adopted to 

resolve the discretized forms for the respective temporal, viscous and convective fluxes 

within each computational node in UPC-CHD. The selected schemes are then verified 

by the reasonably good agreement obtained between the predicted and analytical val-

ues for all CHD flow cases. Subsequently, the parallelism performance is compared 

between UPC-CHD and MPI in its base design till 100 computer threads maximum in 

this study as our first approach. The obtained speedup results provide an early indication 

of the parallelism capability of UPC-CHD for large-scale numerical domains which can 

be further exploited by performing the following.  

 Introduction of other numerical schemes to examine a wider range of CHD flow 

cases which include turbulent incompressible flow, heat transfer, porous media 

flow etc.  

 Coupling of UPC-CHD with AWS cloud computing to exploit a greater number 

of cores to further evaluate the parallelism capability of the former for large-

scale simulation domains. 
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