
High Performance Computational
Hydrodynamic Simulations:

UPC Parallel Architecture as a Future Alternative

*Alvin Wei Ze CHEW1, Tung Thanh VU2, **Adrian Wing-Keung LAW1, 2

1 School of Civil and Environmental Engineering, Nanyang Technological University, N1-01c-98,

 50 Nanyang Avenue, Singapore 639798
2 Environmental Process Modelling Centre (EPMC), Nanyang Environment and Water Research

Institute (NEWRI), 1 Cleantech Loop, CleanTech One, #06-08, Singapore 637141

*Corresponding author’s email: wzchew1@e.ntu.edu.sg

**Corresponding author’s email: cwklaw@ntu.edu.sg

Abstract. Developments in high performance computing (HPC) has today

transformed the manner of how computational hydrodynamic (CHD) sim-

ulations are performed. Till now, the message passing interface (MPI) re-

mains the common parallelism architecture and has been adopted widely

in CHD simulations. However, its bottleneck problem remains for some

large-scale simulation cases due to delays during message passing

whereby the total communication time may exceed the total simulation

runtime with an increasing number of computer processers. In this study,

we utilise an alternative parallelism architecture, known as PGAS-UPC,

to develop our own UPC-CHD model with a 2-step explicit scheme from

the Lax-Wendroff family of predictors-correctors. The model is evaluated

on three incompressible, adiabatic viscous 2D flow cases having moder-

ate flow velocities. Model validation is achieved by the reasonably good

agreement between the predicted and respective analytical values. We

then compare the computational performance between UPC-CHD and

that of MPI in its base design in a SGI UV-2000 server till 100 processers

maximum in this study. The former achieves a near 1:1 speedup which

demonstrates its efficiency potential for very large-scale CHD simulations,

while the later experiences slowdown at some point. Extension of UPC-

CHD remains our main objective which can be achieved by the following

additions: (a) inclusions of other numerical schemes to accommodate for

other types of fluid simulations, and (b) coupling UPC-CHD with Amazon

Web Service (AWS) to further exploit its parallelism efficiency as a viable

alternative.

Keywords: parallel computing; viscous incompressible laminar flow; MPI;

UPC; computational hydrodynamic (CHD) simulations

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

2

1 Introduction

Computational hydrodynamic (CHD) simulations has become a useful tool for engineers

and scientists to accelerate their quantitative understandings of physical, chemical and

even biological processes. For example, CHD has been coupled with the multiscale per-

turbation analysis to numerically resolve for various properties at the varying scales

which can be difficult to compute analytically (Dalwadi et al., 2015, 2016; Chang et al.,

2017). Other CHD works include flow simulations in tight membrane spacers to better

understand the physics of membrane fouling and flow short-circuiting (Jajcevic et al.,

2013; Bucs. et al., 2014; Sousa et al., 2014). Typically, a large-scale CHD simulation

run with high performance computing (HPC) inclusion requires proper management of

the parallelization algorithm to achieve optimization. For example, a 100 million two-

dimensional (2D) mesh involving three important equations (continuity and momentum

equations only) result in an approximate 600 million cell information to be managed dur-

ing each iterative step. Data sharing among computer processers, i.e. threads, is una-

voidable in CHD mesh-bounded numerical domains which underlines the difficulty to

achieve optimization.

At present, the message passing interface (MPI) architecture remains the most pop-

ular parallelism option. Examples include the utilisation of MPI with a million cores by

Balaji et al. (2009) to thoroughly examine its scalability, and many others. At the same

time, difficulties have also been reported when designing MPI applications for consider-

able number of threads with escalated levels of memory hierarchy (Gourdain et al.,

2009; Jamshed, 2015). Thus, the question remains if MPI can effectively accelerate

CHD simulations with the availability of computer threads. The answer is complex as it

depends on a multitude of factors which include: (a) type of numerical scheme imple-

mented, (b) size of computational domain, (c) type of flow problem analysed, and most

importantly (d) the domain decomposition algorithm which determines the distribution of

the threads within the numerical domain, i.e. how many sub-domains are assigned to

each thread after decomposition. We underline that pointer (d) is most significant in af-

fecting the speedup of CHD simulation runs.

In this study, we adopt an alternative parallelism architecture for CHD simulations by

coupling the Partitioned Global Address Space (PGAS) computing concept with Berke-

ley’s Unified Parallel C (UPC) compiler (Chen et al., 2003) as the programming lan-

guage. Two key advantages are expected with PGAS: (a) locality in the shared memory

structure which facilitates the ease of use, and (b) data layout control of MPI’s which

enables performance scalability. We note that the PGAS architecture has been utilised

before (Johnson, 2006 and Simmendinger. et al., 2011). However, to the best of our

knowledge, coupling CHD simulations with the PGAS architecture has been limited by

far. It is also worth noting that no porting of the various computer algorithms/architec-

tures is carried out in this study. Rather, the above-mentioned advantages are already

inherent in the adopted parallelism architecture of PGAS-UPC. The key objective is to

evaluate the viability of harnessing PGAS-UPC as an alternative to accelerate large-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

3

scale CHD simulations, at least by achieving the same parallelism performance as that

of MPI’s in its base design.

We first develop UPC-CHD by coupling the PGAS-UPC architecture with the 2-step

explicit numerical scheme from the Lax-Wendroff family of predictors and correctors.

UPC-CHD is then examined on three incompressible, viscous and adiabatic two-dimen-

sional (2D) flow cases having moderate velocities under laminar conditions. Validation

of UPC-CHD is achieved by the good agreement between the respective analytical and

predicted values. We then demonstrate how UPC-CHD provides early indication of its

parallelism efficiency with 100 computer threads maximum in this study as our first initi-

ation. Finally, this paper is structured as follows. In Section 2, we describe the numerical

scheme implemented in UPC CHD. This is followed by describing UPC-CHD develop-

ment with the adopted PGAS computing concept in Section 3. The parallelism perfor-

mance of UPC-CHD is then examined in Section 4. Finally, Section 5 describes the

salient pointers as obtained from this study.

2 Governing equations

To fully describe the unsteady 2D behaviour of an incompressible viscous fluid under

laminar adiabatic flow conditions, we adhere to (1) which compactly conserves the mass

continuity, momentum flow and energy equations (Anderson, 2009).

𝜕𝑄

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
=

𝜕𝐺𝑉𝑥

𝜕𝑥
+

𝜕𝐺𝑉𝑦

𝜕𝑦
 (1)

where 𝑄 is the conservative temporal term, 𝐹 and 𝐺 are the convective flux vectors in

the x and y directions respectively, 𝐺𝑉𝑥 and 𝐺𝑉𝑦 are the viscous flux vectors in the x and

y directions respectively, and 𝑡 is time.

The exact forms of 𝑄, 𝐹, 𝐺, 𝐺𝑉𝑥 and 𝐺𝑉𝑦 are described in (2) as shown.

𝑄 = [

0
𝑢
𝑣
𝐸𝑡

] , 𝐹 =

[

𝑢
𝑝

𝜌
+ 𝑢2

𝑢𝑣

(𝐸𝑡𝑢) +
𝑝

𝜌
𝑢
]

, 𝐺 =

[

𝑣
𝑢𝑣

𝑝

𝜌
+ 𝑣2

(𝐸𝑡𝑣) +
𝑝

𝜌
𝑣
]

,

𝐺𝑉𝑥 = ʋ

[

0
𝑢𝑥

𝑣𝑥

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦

µ]

, 𝐺𝑉𝑦 = ʋ

[

0
𝑢𝑦

𝑣𝑦

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦

µ]

 (2)

where 𝑢 is the horizontal velocity [𝐿𝑇−1], 𝑣 the vertical velocity [𝐿𝑇−1],
𝑝

𝜌
 the pressure

divided by the fluid density [𝐿2𝑇−2], 𝐸𝑡 the total energy per unit mass [𝐿2𝑇−2], ʋ the

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

4

kinematic viscosity [𝐿2𝑇−1], µ the dynamic viscosity [𝑀𝐿−1𝑇−1], 𝜏𝑥𝑥 and 𝜏𝑦𝑦 the normal

stresses [𝑀𝐿−1𝑇−2], and 𝜏𝑥𝑦 and 𝜏𝑦𝑥 the shear stresses [𝑀𝐿−1𝑇−2].

3 Numerical discretization

To resolve (1) over a 2D numerical domain of regular grids, we adhere to the following

numerical schemes (Kermani and Plett, 2001) for the respective terms in their discre-

tized forms: (a) two-step explicit approximation from the Lax-Wendroff family of predic-

tors-correctors for 𝑄, (b) Roe linear approximation with the 3rd-order upwind biased al-

gorithm for 𝐹 and 𝐺, and (c) 2nd-order central differencing for 𝐺𝑉𝑥 and 𝐺𝑉𝑦.

The implemented numerical schemes are then examined for the following CHD

cases, namely (a) Blasius boundary layer, (b) Poiseuille’s flow, and (c) Couette’s flow.

In UPC-CHD, there are four boundaries of concern for a simplified 2D numerical domain

as illustrated in Fig. 1. The exact conditions (BCs) adopted for these boundaries in each

CHD case are then described in Table 1.

Fig. 1. Boundaries of concern for a simplified 2D numerical domain adopted in UPC-

CHD

Table 1. Exact boundary conditions (BCs) implemented in UPC-CHD for respective CHD
cases with reference to Fig. 1.

BCs
Blasius boundary layer

(CHD case A)
Poiseuille’s flow
(CHD case B)

Couette’s flow
(CHD case C)

Inlet

u = freestream velocity

v = 0

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2

u = freestream velocity

v = 0

𝑝

𝜌
 = fixed value

u = freestream velocity

v = 0

𝑝

𝜌
 = fixed value

Outlet

𝑑𝑢

𝑑𝑥
= 0

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2

𝑑𝑢

𝑑𝑥
= 0

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2

𝑑𝑢

𝑑𝑥
= 0

𝑝

𝜌
 ≈ 98.1𝑚2𝑠−2

Top u = freestream velocity
u = 0

v = 0

u = freestream velocity

v = 0

Bottom u = 0; v = 0 u = 0; v = 0 u = 0; v = 0

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

5

4 UPC-CHD model development

Within UPC-CHD, we introduce the following procedures to achieve our parallelization

objective. Firstly, we identify the time-consuming computational functions and data de-

pendences involved. We then implement appropriate algorithms for data divisions and

storage as based on the required data dependences and model workflow. There are

three components to fully describe UPC-CHD, namely (a) implemented computational

structure, (b) domain decomposition and data storage algorithms, and (c) unique work-

sharing function.

(a) Computational structure

For each node within the numerical domain (Fig. 1.), the flux predictor at the (𝑛 + 1/2)

time level is first computed followed by the flux correction at the (𝑛 + 1) time level. Both

the flux predictor and corrector are defined within a nested loop and the complexity of

the nested loop algorithm is defined as 𝑂(𝑁2), where 𝑁 is the number of nodes in a

singular direction. The original nested loop is divided into multi sub-loops to prevent data

conflicts. After every new nested loop, a synchronization point is inserted using an UPC

function, termed as upc_barrier, to synchronize all threads before proceeding to the next

function. We note that the fluxes predictions and correctors at the respective time steps

contribue to the most time-consuming functions in the algorithm which will be addressed

in the following sub-section.

(b) Domain decomposition and data storage algorithms

The 2D numerical domain of 𝑁 by 𝑁 size (Fig. 1.) is first divided into a distinct number

of computational rows. A defined group of rows then constitutes to a sub-domain having

affinity to a computer thread. With 𝑇 number of threads, we consider the following pro-

tocol for domain decomposition: (i) if N is divisible by T, then there will be
𝑁

𝑇
 sub-domains

and each contains the same number of rows, or (ii) if N is not divisible by T, then the first

𝑖𝑛𝑡(
𝑁

𝑇
) sub-domains contain the same number of rows, the last sub-domain contains the

remaining rows. For example, if 𝑁 = 8 and 𝑇 = 3 then the first 2 threads handle the

first two sub-domains with three rows each whereas the last thread contains the third

sub-domain with two rows. At this moment, UPC-CHD is only considering an ideal

square-shaped numerical domain as our first approach. The above-discussed details is

most critical to manage the time-consuming functions in the algorithm in terms of the

data distribution in the sub-domains which directly affect the total communication time.

The following questions remain to be further investigated: (i) ideal number of sub-do-

mains to be deployed with respect to the number of computer threads available, and (ii)

the ideal number of cores to be used.

Finally, the respective threads assigned to the first and last sub-domain are termed

as 𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡 and 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑛𝑑 , and we note that the domain decomposition is first per-

formed on thread 0. The last thread is termed as (𝑇 − 1). The required fluxes

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

6

(𝑄, 𝐹, 𝐺, 𝐺𝑉𝑥, 𝐺𝑉𝑦) for each computational node within the domain are computed via a

row-by-row method by utilising the respective data values from the two upper and two

lower rows. To minimize the communication time involved, each sub-domain is directly

affiliated with thread 𝑇𝑖 by using the blocked-cyclic technique as illustrated in Fig. 2. We

should note that the only exceptions for 𝑇𝑖 to access data outside of its assigned sub-

domain are restricted to the latter’s respective first and last rows.

Fig. 2. Simplified illustration of domain decomposition and data storage methodology
introduced for a 2D numerical domain of 𝑁 by 𝑁 size; 𝐷𝑖 represents sub-domain 𝑖 having

affinity to a unique CPU thread

(c) UPC’s work-sharing function

In Berkeley’s UPC compiler, the computations within the nested loops, as discussed

previously in sub-section (a), are distributed using a work-sharing function, termed as

upc_forall. In UPC, the total number of threads is determined with a UPC identifier,

THREADS. Each thread is identified by using another identifier, MYTHREAD. With

upc_forall, all threads with MYTHREAD from 0 to THREADS-1 undergo the same com-

putational steps for the fluxes involved. Each unique thread is designed to compute the

fluxes on the different sub-domain which is identified by using different 𝑡ℎ𝑟𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡

and 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑛𝑑 .

5 Results and discussions

5.1. Numerical validations

To validate the selected numerical schemes in UPC-CHD, the numerical predictions de-

rived for the three CHD cases are compared with the respective analytical solution:

(case A) with analytical solution of White’s (White, 1991), (case B) with (3) in the follow-

ing (Munson et al., 2006), and (case C) with (4) in the following (Munson et al., 2006).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

7

𝑢

𝑈
=

(𝑦2 − ℎ2)

2𝑈𝜐
(
𝜕 (

𝑝
𝜌
)

𝜕𝑥
) (3)

𝑢

𝑈
=

𝑦

ℎ
−

ℎ2

2𝑈𝜐
(
𝜕 (

𝑝
𝜌
)

𝜕𝑥
) (1 −

𝑦

ℎ
) (

𝑦

ℎ
) (4)

where 𝑈 is the freestream velocity [𝐿𝑇−1], ℎ is the total vertical height of the domain [𝐿].

 The physical dimensions of the deployed numerical domains and the initial flow con-

ditions adopted for the respective CHD cases are summarized in Table 2. Fig. 3 indi-

cates reasonably good agreement between the predicted and analytical values which

validates the implemented numerical scheme in UPC-CHD. We note that the maximum

error quantification in Table 2, particularly for CHD case A, can generally be attributed

to the following reasons: (i) use of regular meshes for sensitive flow regions whereby

further refinements are required, and (ii) possible inaccuracies in the imposed boundary

conditions at the top and outlet boundaries for Case A.

Table 2: Dimensions and initial conditions of deployed numerical domains to validate the
numerical values obtained for CHD cases A to C

Parameter Case A Case B Case C

𝑥 (𝐿) 0.3 0.5 0.5

ℎ (𝐿) 0.02 0.00016 0.00016

𝑁 𝑥 𝑁 (number of nodes) 65 x 65 300 x 45 300 x 45

𝑈 (𝑚/𝑠) 0.05 10 10

𝑅𝑒 15000 1600 1600

𝜕 (
𝑝
𝜌
)

𝜕𝑥
 (𝑚𝑠−2)

0 4700 4700

𝛥𝑡 (𝑠) 10−6 10−6 10−6

Total runtime (𝑠) 0.01 0.01 0.01

Temperature (𝐾) 293.15 293.15 293.15

𝜐 (𝑚2𝑠−1) 10−6 10−6 10−6

Maximum error percentage (%) ~25 ~1.7 ~0.5

5.2. Parallelism performance

We adhere to the speedup (𝑆) parameter in (5) to compare the parallelism performance

of UPC-CHD with that of MPI at their basic designs in a SGI UV-2000 server for all CHD

cases of very large numerical domains. Technical specifications of the server used are

described in Table 3. All other conditions from Table 2 are unchanged with the exception

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

8

for the 𝑁 by 𝑁 parameter for the respective cases: (A) 5000 x 5000, (B) 10000 x 10000,

(C) 10000 x 10000.

𝑆(𝑐) =
𝑇1

𝑇(𝑐)
 (5)

where 𝑇(𝑐) is the run time of the parallel algorithm, 𝑇1 is the run time of the model which

employs a singular thread and 𝑐 is the number of computer threads. We first note that

the parallelism evaluation between UPC-CHD and MPI is confined till 100 computer

threads maximum in this study due to resources limitations. The key objective is to eval-

uate the adopted parallelism architecture of UPC-CHD as a viable alternative to that of

MPI’s in its base design.

Table 3. Technical specifications SGI-UV 2000

Cluster Node CPUs
CPU
speeds
(GHz)

Cores
per node

Node
RAM
(TB)

Available
cores

Communication
switch

SGI
UV-2000

Intel Xeon
E5-4657LV & E5-2670

2.4 16 2
up to 100

cores
InfiniBand

Shared-memory

Fig. 3. Comparison between analytical and predicted values for respective CHD cases
in UPC-CHD: (a) Blasius boundary layer, (b) Poiseuille’s flow, and (c) Couette’s flow.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

9

Generally, both UPC-CHD and MPI achieve a near identical 𝑆 values up to c = 16 in

Fig. 4. However, beyond 16 and up to c = 100 maximum in this study, UPC’s speedup

is most significant by having a close ratio of 1:1 and reaches nearly 90 times speedup

for CHD cases A and B (Fig. 4.).

Fig. 4. Comparison of parallelism performance between MPI and UPC-CHD: (a) Blasius
boundary layer – CHD Case A, and (b) Poiseuille’s flow – CHD Case B.

MPI achieves relatively significant 𝑆 values for Cases A and B in Fig. 4 for 𝑐 beyond

16. The difference in the 𝑆(𝑐) between Cases A and B is likely ascribed to the difference

in the number of computational nodes deployed (25 million nodes for Case A and 100

million nodes for Case B) which affect the number of messages being transmitted within

each assigned sub-domain. For instance, when running with 𝑐 = 32, MPI achieves 𝑆

values of 26.7 and 22.5 for Case A and B respectively (Fig. 4.). With MPI, thread 𝑇𝑖

transmits multiple messages to the neighboring threads at every time-step which in-

clude: (a) velocity and convective fluxes data values in x- and y- directions correspond-

ing to thread 𝑇𝑖−1 and 𝑇𝑖+1, and (b) updated data to the main thread. At the maximum 𝑐 =

100, over 900 messages must be processed in the system at each iterative step, despite

having only 100 rows of data to be computed for each thread. The respective differences

in the number of messages to be transmitted in Cases A and B result in different pro-

cessing time for each message. As 𝑐 increases beyond 32 with the MPI architecture, the

idling time among the threads takes effect whereby each thread must wait for the other

threads to complete their respective computations at each time step which thus explains

the gradual stagnation in the parallelism performance after 64 cores and thereafter. Con-

sequently, the total message processing time outweighs the total computational time in

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

10

each thread, which restricts the continual speedup with an increasing number of threads

with MPI. On the contrary, Fig. 4 indicates that UPC-CHD better manages the total mes-

sage processing time beyond 𝑐 = 64 due to its inherent shared memory component

which enables the threads to access the data within the shared memory via a global

address.

The advantage of embedded locality consciousness in UPC-CHD is further investi-

gated in Case C by further examining the impact of thread affinity on its parallelism per-

formance. The computational data of each sub-domain are first stored in-block to gain

memory locality properties, while the global memory accessing activities are overlapped

with remote control technique using the split-phase barrier to conceal the synchroniza-

tion cost. To further illustrate this advantage, we evaluate the performance for Case C

under two scenarios: (a) UPC-A, i.e. UPC with optimizations, and (b) UPC-NA, i.e. UPC

without optimizations and employs the defaults setting of the GPAS compilers.

As expected, UPC-NA’s speedup performance is vividly inferior to that of UPC-A’s as

shown in Fig. 5. For instance, at 𝑐 = 16, the respective 𝑆 values attained are 15.8 and

4.3 for UPC-A and UPC-NA, respectively.

Fig. 5. Comparison of parallelism performance between UPC-A and UPC-NA for CHD

case C (Couette’s flow)

The difference in the attained speedup between UPC-A and UPC-NA can be further

described from Fig. 6 by using a 3 x 3 numerical domain example having an affinity block

of 3. In UPC-NA, thread 0 contains the fluxes data of element a, d and g in its local

memory section whereby d and g belongs to the other threads, whereas in UPC-A,

thread 0 contains the fluxes data of element a, b and c in its local memory (Fig. 6)

whereby all three elements belong to the common thread. The observed inferior perfor-

mance of UPC-NA (Fig. 5) is caused by the need for thread 0 to function with non-affinity

data, i.e. element b in thread 1 and element c in thread 2, which results in longer com-

putational run time for UPC-NA. With 𝑐 = 1, there is only a singular thread which com-

putes the fluxes in the entire numerical domain, and functions only with data having

affinity with. With an increasing number of threads, the latency issue arises which results

in less than ideal computational performance. For instance, at 𝑐 = 2 and 4 respectively,

50% and 25% of the total runtime are attributed to the need to access non-affinity data

by the respective threads. While the addition of 𝑐 would reduce the amount of global

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

11

accessing activity in UPC-NA, optimization is still unlikely as observed in Fig. 5. This

observed behavior for 𝑆 needs to be further investigated.

Fig. 6. Schematic representation of UPC-NA (left) and UPC-A (right) concepts

In summary, we recommend distributing the array of data in contiguous blocks as

demonstrated in UPC-A, which enables each thread to attend to a system of elements

as dependent on the number of threads available. We hypothesize that the proposed

UPC-PGAS architecture without any affinity optimization is likely unsuitable in acceler-

ating the speedup performance when compared with to that of MPI’s.

6 Conclusion

An alternative parallelism architecture, which couples the PGAS computing concept with

Berkeley’s UPC compiler, is developed for large-scale computational hydrodynamic

(CHD) simulations. The parallelism model developed is termed as UPC-CHD. As our

first initiation, UPC-CHD is examined on three incompressible, adiabatic and viscous 2D

flow cases having moderate flow velocities. Varying numerical schemes are adopted to

resolve the discretized forms for the respective temporal, viscous and convective fluxes

within each computational node in UPC-CHD. The selected schemes are then verified

by the reasonably good agreement obtained between the predicted and analytical val-

ues for all CHD flow cases. Subsequently, the parallelism performance is compared

between UPC-CHD and MPI in its base design till 100 computer threads maximum in

this study as our first approach. The obtained speedup results provide an early indication

of the parallelism capability of UPC-CHD for large-scale numerical domains which can

be further exploited by performing the following.

 Introduction of other numerical schemes to examine a wider range of CHD flow

cases which include turbulent incompressible flow, heat transfer, porous media

flow etc.

 Coupling of UPC-CHD with AWS cloud computing to exploit a greater number

of cores to further evaluate the parallelism capability of the former for large-

scale simulation domains.

 1

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

12

Acknowledgements

This research study is funded by the internal core funding from the Nanyang
Environment and Water Research Institute (NEWRI), Nanyang Technological University
(NTU), Singapore. The first author is grateful to NTU for the 4-year Nanyang President
Graduate Scholarship (NPGS) for his PhD study.

References

1. Anderson, J. D. (2009), "Governing Equations of Fluid Dynamics," In J. F. Wendt
(Ed.), Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 15 - 51.

2. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Kumar, S., Lusk, E., Lusk, Thakur
R., Träff, J. L. (2009), "MPI on a Million Cores.,"In M. Ropo, J. Westerholm & J.
Dongarra (Eds.), Recent Advances in Parallel Virtual Machine and Message
Passing Interface: 16th European PVM/MPI Users’ Group Meeting, Espoo, Finland,
September 7-10, 2009. Proceedings (pp. 20-30). Berlin, Heidelberg: Springer Berlin
Heidelberg.

3. Bucs, S. S., Radu, A. I., Lavric, V., Vrouwenvelder, J. S. , and Picioreanu, C. (2014),
"Effect of different commercial feed spacers on biofouling of reverse osmosis
membrane systems: A numerical study," Desalination, vol. 343, pp. 26-37.

4. Chang, C.-W., Liu, P. L. F., Mei, C. C., & Maza, M. (2017), "Modeling transient long
waves propagating through a heterogeneous coastal forest of arbitrary shape,"
Coastal Engineering, vol. 122(Supplement C), pp. 124-140.

5. Chen, WY, Bonachea, D., Duell, J., Husbands, P., Iancu, C., & Yelick, K. (2003),"
A Performance Analysis of the Berkeley UPC Compiler," Lawrence Berkeley
National Laboratory. Retrieved from https://escholarship.org/uc/item/91v1j2jw

6. Dalwadi, M.P., Griffiths, I.M., and Bruna, M., (2015), “Understanding how porosity
gradients can make a better filter using homogenization theory,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Science, vol. 471 (2182).

7. Dalwadi, M., Bruna, M., and Griffiths, I., (2016), “A multiscale method to calculate
filter blockage,” Journal of Fluid Mechanics, vol. 809, pp. 264-289.

8. Gourdain, N., Gicquel, L., Montagnac, M., Vermorel, O., Gazaix, M., Staffelbach, G.
(2009), "High performance parallel computing of flows in complex geometries: I.
Methods," Computational Science & Discovery, vol. 2 (1), p. 015003.

9. Jajcevic, D,, Siegmann, E., Radeke, C,, and Khinast, J. G. (2013), "Large-scale
CFD–DEM simulations of fluidized granular systems," Chemical Engineering
Science, vol. 98, pp. 298-310.

10. Jamshed, S. (2015), "Chapter 3 - The Way the HPC Works in CFD," in Using HPC
for Computational Fluid Dynamics, ed Oxford: Academic Press, pp. 41-79.

11. Johnson, A.A. (2006), "Using Unified Parallel C to Enable New Types of CFD
Applications on the Cray X1/E", Cray User Group Conference.

12. Kermani, M. and Plett, E. (2001), "Roe scheme in generalized coordinates. I -
Formulations," in 39th Aerospace Sciences Meeting and Exhibit, ed: American
Institute of Aeronautics and Astronautics.

13. Kermani, M. and Plett, E. (2001), "Roe scheme in generalized coordinates. II -
Application to inviscid and viscous flows," in 39th Aerospace Sciences Meeting and
Exhibit, ed: American Institute of Aeronautics and Astronautics.

14. Munson, B. R., Young, D. F., & Okiishi, T. H. (2006). Fundamentals of fluid
mechanics. 6th Ed., Hoboken, NJ: J. Wiley & Sons, ch. 6. pp. 263-331

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

13

15. Simmendinger, C., Jägersküpper, J., Machado, R., Lojewski, C. (2011), "A PGAS-
based Implementation for the Unstructured CFD Solver TAU", Partitioned Global
Address Space Programming Models, Galveston Island.

16. Sousa, P., Soares, A., Monteiro, E., and Rouboa, A. (2014), "A CFD study of the
hydrodynamics in a desalination membrane filled with spacers," Desalination, vol.

349, pp. 22-30.
17. White, F. M. (1991), Viscous Fluid Flow, 2nd Ed.., McGraw-Hill, Chapter. 7, pp. 457-

528.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_34

https://dx.doi.org/10.1007/978-3-319-93698-7_34

