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Abstract. Complex networks provide a means to describe cities through
their street mesh, expressing characteristics that refer to the structure
and organization of an urban zone. Although other studies have used
complex networks to model street meshes, we observed a lack of methods
to characterize the relationship between cities by using their topological
features. Accordingly, this paper aims to describe interactions between
cities by using vectors of topological features extracted from their
street meshes represented as complex networks. The methodology of
this study is based on the use of digital maps. Over the computational
representation of such maps, we extract global complex-network features
that embody the characteristics of the cities. These vectors allow for the
use of multidimensional projection and clustering techniques, enabling a
similarity-based comparison of the street meshes. We experiment with
645 cities from the Brazilian state of Sao Paulo. Our results show how
the joint of global features describes urban indicators that are deep-
rooted in the network’s topology and how they reveal characteristics
and similarities among sets of cities that are separated from each other.

Keywords: Network Topology; Feature Vector; Cluster Analysis.

1 Introduction and Related Works

Complex networks are used to shape real-world systems, e.g. networks of protein
interaction, street meshes, and subway lines. These networks, as mathematical
models, stand out due to their algebraic properties and computing potential, with
analytical applicability to support cognitive processes of decision-making [1].
Through metrics and methods based on topology and/or geometry, it is possible
to identify characteristics of interest that are not obvious for human inspections
based on reading; this is because the networks may be wide (high number of
vertices), intricate (high number of edges), or may hold non-trivial patterns and
attributes whose observation depends on the application of algorithms.

In the specific case of the representation of street networks, complex networks
describe factors related to the displacement of individuals, allocation of services,
the improvement of tasks related to transport, and even to the study of factors
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from collective behavior, when the network is weighted by the associated data.
In this regard, we observed a lack of methods to characterize groups of cities by
means of the features that can be extracted from their topology, which is the aim
of this research. This methodology has potential to enhance the understanding of
an urban space and to explain the reason why cities share properties of interest.

To this end, we developed a methodology composed of Data Acquisition
and Preparation, Feature Extraction and Selection, and Feature Vector Analysis.
We analyzed 645 cities from the state of Sao Paulo, aiming to provide
comprehension of peculiarities from different cities by interpreting global
network-characteristics. These cities are representations of street meshes that
were extracted from digital maps, such that they were gathered and analyzed
by using machine-learning methods of feature extraction, multidimensional
projection, and cluster analysis. In order to demonstrate our methodology, we
investigate the following hypotheses: (A) the network topology is a tool-set
that can reveal groups of cities with similar characteristics, potentially revealing
disparities; (B) although cities may share administrative boundaries with others,
they cluster with cities with no apparent geographical similarity; and, (C) there
might be interesting correlations between urban and/or territorial indicators and
the features extracted from the street-network topology of a given set of cities.
The answering of such assumptions allows us to render better analysis of urban
agglomerations by helping in the understanding of cities by comprehending how
they are arranged within the geographical extent of their territorial boundaries.

Aiming to solve questions related to the urban scenario, a vast number of
studies have been conducted to explain cities considering their intense flow of
vehicles [2] and collective behaviors [3], while others analyzed the accidents
density in street networks [4] and the discrepancies between cities driven by
their urban indicators [5]. Furthermore, some authors investigated metrical and
analytical methods applied to cities [6, 7], others approached the assistance to
the urban planning and design [8–10], and there are those who advanced with
facility-location analysis and planning in street meshes [11]. However, although
cluster analysis has been less focused [12, 13], it is still an important toolset [14].

Two state-of-the-art works used clustering techniques to analyze groups of
cities, but both of them left open questions to be explored. The first one had the
intention to measure the similarity among ten European cities [12], while the
second one performed an eye-based cluster evaluation considering the proximity
and overlap of 1,150 cities, mainly from the Anglo-Saxon America [13]. Their lack
of proficiency is mainly because they do not employ clustering algorithms in the
same fashion that we do, including validation metrics and analytical indicators.

In this paper, we contribute with a methodology that advances the analysis
of cities modeled as complex networks. To present our contributions, this paper
is organized as follows: Section 2 displays our methodology while explaining the
validation of its results; Section 3 discusses the results about the applicability of
the proposed methods; and, Section 4 presents the conclusions and final remarks.
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2 Methodology

Our methodology is based on the intersection of methods of data Acquisition,
Modeling, and Computation, and it follows a process flow depicted in Figure 1.

Fig. 1: Methodology for street-network characterization through feature-vector
and cluster analysis based on data Acquisition, Modeling, and Computation.
The methodology starts by acquiring digital maps of cities from the
OpenStreetMap (OSM), such maps are used for the modeling of complex
networks. The resulting networks are used in the processes of extraction and
selection of topological-features. These features are analyzed according to data-
mining methods of multidimensional projection and cluster detection.

2.1 Preliminaries

Hereinafter, we represent complex networks as distance-weighted directed
graphs. Notice that, despite different, complex networks and graphs are
considered to be equivalent. A graph G = {V,E} is composed of a set of |V |
nodes and a set of |E| edges. Furthermore, each edge e ∈ E is known to be
an ordered pair 〈o, d〉, in which o ∈ V is named origin and d ∈ V is named
destination, o 6= d. We provided to the edges a double-precision floating-point
weight dod, which refers to the great-circle distance between node o and node d.
The great-circle distance refers to the Euclidean distance between two points on
the surface of a sphere; which in our case, the sphere is a projection of the Earth.

2.2 Data acquisition and preparation

For each one of the 645 cities from the Brazilian state of Sao Paulo, we got their
administrative boundaries and indicators related to territorial extension and
demography from the Brazilian Institute of Geography and Statistics (IBGE)1.
The boundaries served as shapefiles to crop data obtained from OpenStreetMap
(OSM)2, which is an open data repository and a social network of collaborative

1 www.ibge.gov.br 2 www.openstreetmap.org
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street mapping. The OSM’s data describe real-world abstractions represented
by georeferenced objects. These objects are described by means of its relations,
which, in turn, refer to the streets (edges) and crossings (nodes) of a city, which
were turned into complex networks where the edges intersect only at the nodes.

2.3 Feature extraction and selection

Metrics of graphs, referred to as features, can be divided into local and global [15];
local metrics describe properties of individual elements that form the network,
while global metrics characterize the whole network by a single value that is
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Fig. 2: A visualization of the mutual-correlation matrix of all the metrics we
considered. The color describes the correlation between pairs of features. The
metrics were hierarchically grouped through a dendrogram by means of the
correlation of their values. Consequently, correlated metrics tend to stay in the
same group; non-correlated metrics tend to be in separated groups. Additionally,
the metrics we selected are colored in black and highlighted by a diamond marker.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_21

https://dx.doi.org/10.1007/978-3-319-93698-7_21


computed considering all of their elements. We rather use global metrics than
local ones because they allow straightforward comparison between cities.

In order to gather these metrics, we designed a feature extractor to calculate
a feature vector from any complex network given as input. First, we selected
various metrics as candidates to render characteristics about cities, from which
29 metrics were chosen by their potential in providing insights about a given
street network (see Figure 2 for details). Such metrics were selected because
they are linked to the network topology, which describes the streets of the cities.

After collecting all the metrics, we removed the non-relevant ones based on
their mutual correlation. We computed the Pearson correlation coefficient [16]
for each pair of metrics; such coefficient is defined in the interval [−1.0, 1.0]
where the extreme values indicate, respectively, the maximum negative and
positive correlation, while 0.0 indicates no linear correlation at all. Following,
we removed all the metrics with strong mutual correlation as indicated by the
Pearson correlation in the interval [−0.5, 0.5]. In cases where any two metrics are
outside this interval, one of the metrics was randomly discarded. Such process
of metrics selection ensures that just metrics that are unique and non-related
with the others will be used to describe the cities. Other processes of feature
selection can be used in this step; even the multidimensional projection by itself
can provide reasonable results. Notice that, the reduction of the dimensionality
of the data was not our main priority, but rather to find the most complete
set of metrics, that is the one that better characterizes the networks, without
including redundant information; and, to this end, features correlation plays an
import role. All metrics are depicted in Figure 2; the ones that remained, 9 out
of 29, were highlighted and are defined according to Costa et al. [17], as follows:

Degree Distribution Entropy (H). The degree distribution of a network
describes the probability of finding a vertex with a given degree. Whereas, the
entropy represents the amount of uncertainty and randomness in a certain piece
of information. By using the entropy in a city degree distribution, we can measure
the uncertainty between street connections. Equation 1 describes such metric,
where Pk represents the ratio of nodes with degree k.

Average Shortest Path (L ). It quantifies the average of all shortest paths
(dSij) that link all the pairs of nodes in a complex network (Equation 2), it is
used to quantify the capacity of locomotion through the shortest paths of a city.

H = −
∞∑
k=0

Pk × log(Pk) (1) L =

∑|V |
i=1

∑|V |
j=1 d

S
ij

|V |(|V | − 1)
(2)

Degree Assortativity Coefficient (R). It refers to the in and/or out degree
correlation between pairs of nodes. That is, positive values indicate that nodes
with similar degrees tend to connect to each other, while negative values indicate
the same, but regarding nodes with different degrees. It can be understood as
the probability of moving from an unimportant street to an important one based
only on the number of adjacent streets to both of them. Equation 3 uses exy to
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refer to the fraction of edges that join together vertices with degree x and y, ax
and by to the fractions of edges that start and end at vertices with degree x and
y; and, σa and σb to the standard deviations of the distributions ax and by.

Eccentricity (E). This metric is a local one, measuring for a vertex the
longest shortest distance between all the other vertices of a given graph [18]
(see Equation 4). In a global perspective, the greatest eccentricity from a graph
is known to be the network diameter, while the smallest one is regarded as the
network radius. They can reveal cities that may suffer from access issues by being
sparse if the radius of a network is too small when compared to its diameter.

R =

∑
xy xy(exy − axby)

σaσb
(3) Ei =

1

max{dSij |∀j ∈ V }
(4)

Planar Network Density (D). The density of a planar graph is defined as
the ratio between the number of edges E and the number of all possible edges in
a network with N nodes with no intersecting edges. It can be used to describe
how dense is the street mesh of a city or a neighborhood. The metric is unique to
each network, once the position of the nodes interferes in the number of edges. It
is an algorithmic adaptation of the graph density [19], described in Equation 5.

Central Point Dominance (CP
D). This metric assesses the global centrality

of a whole network by means of its network’s betweenness deviation, which is a
distance-based centrality metric. Values close to 0 indicate plenty of distance-
efficient routes similar to the shortest one; whereas, values close to 1 indicate that
the network might become vulnerable without its central node because the node
might be used to connect different components, serving as an access point (e.g.
bridges and tunnels). In Equation 6, v̄ is the node with the highest betweenness
and B(v) is the normalized betweenness of the node v that lies in the range [0, 1].

D =
|E|

|N | (|N | − 1)
(5) CP

D =

∑|V |
v Bv̄ − Bv
|V |(|V | − 1)

(6)

Two-way Streets (Tw). It refers to the number of double edges in a network,
which are edges that provide two-way routes between the same pair of nodes.
This metric follows Equation 8, in which fij is a clause-based auxiliary function.

Global Clustering (Gc). The metric, which is described by Equation 8, consists
of the fraction of the number of triangles N4 and triples N3 of the network. It
refers to how the streets tend to cluster in the crossings of a given city, such that
the greater the value the more possibilities of locomotion in fewer steps.

Tw =

∑E
〈i,j〉 fij

2
, fij =

{
1, 〈j, i〉 ∈ E

0, otherwise
(7) Gc =

(3× N4)

N3
(8)
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2.4 Feature vector analysis

In this step, we focused on two methods from the data mining literature, the first
one of multidimensional projection and the second one of clustering detection.
Multidimensional projection allows the visualization of data by reducing its
dimensional space, revealing particularities and behaviors to be explored through
cluster-based analysis. Cluster analysis, in turn, focuses on the study of data
interactions, inferring that two elements are similar because they are in the
same cluster or dissimilar because they are in different ones. Consequently, the
combination of these two methods contributes to the assessment of cities by their
potential to reveal patterns that are not evident through an eye-based analysis.

Regarding multidimensional projection, our methodology consists of using
two techniques [20]; the first one is named Isomap and the second one is known
as Principal Components Analysis (PCA). Isomap is a nonlinear dimensionality
reduction technique, which provides an embedding in a lower dimension while
maintaining the geodesic distance between the data elements. Contrarily, PCA is
a linear technique, which uses orthogonal conversions to turn a set of variables
into linearly uncorrelated values with the largest possible variance. To choose
both techniques, we used knowledge about the domain; we have kept track of
some already-known dissimilar cities, seeking for approaches to distinguish them.

In the cluster analysis part, we used the technique KMeans [21], which splits
the data into groups of equal variance, minimizing the sum-of-squares distance
within clusters. The KMeans algorithm assumes that (i) the distribution of
features within each cluster resembles spheres, which means that all features
have equal variance and they are independent of each other; (ii) regarding the
cluster size, the dataset is balanced; and, (iii) the density of the clusters is similar.
The dataset we used consists of uncorrelated values and balanced instances of
feature vectors, all of which have quasi-equal variance, meeting the algorithm
requirements. In addition, KMeans is widely used in the related literature due to
its robustness, versatility, and scalability. To validate our results we considered
cluster quality metrics [22]. Their focus is to analyze the similarity between
elements that have been assigned to the same cluster. We used a combination of
the Silhouette score [23] and the Dunn index [24]; both of which are known to be
internal-quality metrics, not requiring a pre-labeled dataset. The Silhouette is
defined between [−1, 1] for each cluster, the closer to 1 the better; it measures the
cohesion and separation of clusters by evaluating how similar an element is in its
own cluster when contrasted to other clusters. To further enhance the reliability
of our analysis, we applied the Dunn index, which is a cluster distance-based
quality metric that measures the separation among clusters, whose values are in
between of [0,∞[. In cases when the Dunn’s index distance is greater than one,
there is little or none cluster overlapping. Using both together, we have a double
validation of quality by means of cohesion and separation of our set of clusters.
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3 Results

3.1 Relationship of population size and topological features

With regard to the population density — see Figure 3 for details —, the majority
of the cities in our dataset is of tiny or small size, but the dataset has a substantial
number of medium-sized cities and a small number of large-sized ones, including
Sao Paulo — the biggest Brazilian city. Prior analyses can be done by observing
Figure 4, where cities (depicted as points) were sized by their number of nodes.

Tiny

Large

Small
Medium

Label

< 5.152

> 38.695

< 12.799
< 38.695 

Inhabitants

Piracicaba

Marilia

Campinas

Sao Paulo

Fig. 3: Urban indicator related to the population
density of the cities of the state of Sao Paulo. The
cities were divided into four classes that describe
the number of inhabitants of each one of them.

A first evidence that the
topological features we se-
lected can describe relevant
knowledge about cities is
the fact that Sao Paulo is
isolated from the other ones
in the PCA projection. A
similar fact can be observed
on a small scale consider-
ing the large-sized city of
Campinas and the medium-
sized cities of Marilia and
Piracicaba, which are apart
from the main group of cities
located on the left part of the
image. We believe that such
behavior is connected to the
demographics of the cities.
On a large scale, topological features can predict demographic characteristics
of a city, whereas, on a small scale, they can reflect the neighborhoods that
are densely or sparsely populated. For a less unbalanced view, we removed Sao

Number of nodes

80,000 20,000 15,000 5,000 500 250

Small cities

Big cities

Fig. 4: Projection of feature vectors in two dimensions by using PCA; the size
of the points refers to the number of nodes (intersections) in the cities’ complex-
network. The projected features reveal that the city of Sao Paulo (on the right-
hand side) is an outlier when compared to the others (on the left-hand side).
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Single cluster

Big cluster

Small cluster

Fig. 5: Projection of the features, excluding Sao Paulo, using PCA and Isomap.
PCA shows a single dense area with many sparse data, while Isomap shows
multiple dense areas together with several sparse data. As a consequence, PCA
implies a single cluster while Isomap points to an inherent hierarchy of clusters.

Paulo from the dataset, depicting in Figure 5 the normalized values of the feature
vectors of the cities that remained using both PCA and Isomap techniques.

The two techniques show us that the majority of the data is concentrated
in a small region, while the rest of it is sparse and distributed along the axes.
The main difference between both of them is that Isomap implies multiple areas
with considerable density, while PCA has a single dense area and many sparse
data. This is evidence that tiny and small-sized cities tend to cluster isolating
medium and large-sized cities that are too different from them. Despite the fact
that such cities tend to cluster, Isomap shows that they have particularities

Features projected in one dimension Features projected in one dimension

Pearson correlation coefficient Pearson correlation coefficient

Fig. 6: Correlation test between the population density and a one-dimension
projection of the cities’ topological-features regarding both PCA and Isomap.
Both images show a strong correlation, revealing that, on a large scale, the
topological features of the cities can indicate, or even predict, their demography.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_21

https://dx.doi.org/10.1007/978-3-319-93698-7_21


that make them split into smaller clusters inside a bigger one. Also, it is safe to
infer that by being scattered, medium-sized and large-sized cities have no clear
pattern, but still, they may share common characteristics to be further explored
with clustering algorithms. Even so, we can show, by using correlation, that the
network’s demography can be inferred from the city’s topology – see Figure 6.

To prove that the network’s demography can be inferred from the city’s
topology, we measured the relationship between the topological features and the
demography by means of correlation. To this end, we reduced the dimensionality
of the feature vectors of each city to one, using both techniques, PCA and
Isomap, resulting in one single value for each one of the 645 cities. Next, we
correlated such values with the size of their population. As a result, we got 0.803
and 0.799 of correlation for PCA and Isomap, respectively. Both values indicate
that the data has a strong correlation, allowing us to state that in the case of the
Brazilian state of Sao Paulo, topological features and demographics are strongly
correlated. Such pattern opens doors for new investigations, as the ones placed
by the dynamics of the social behavior; as in the case of criminality and mobility.

3.2 Relationship of cluster assignment and territorial extension

The cluster analysis aimed at the identification of the best number of clusters to
describe our dataset. Consequently, we exhaustively tested the KMeans’ cluster-
quantity parameter from 2 to 644 clusters — the total number of cities without
considering Sao Paulo. During the test, we were seeking for the greatest average
Silhouette score (AVG) only when the Dunn index (DNN) was larger than one.

The previous experiment suggests that the best way to split our data is into
two clusters. Such configuration has an AVG of 0.59 and a DNN of 1.10 (see
Figure 7). When dividing the data into two, the clusters are better balanced
rather than when considering Sao Paulo — a big outlier — as part of the dataset.

Average (AVG) = 0.59 and Dunn index (DNN) = 1.1 Average (AVG) = 0.52 and Dunn index (DNN) = 0.53 Average (AVG) = 0.52 and Dunn index (DNN) = 0.74

number of elements

Fig. 7: Silhouette analysis of the subset of our data without Sao Paulo, in which
clusters are represented as color-coded polygons. In each scenario that we have
tested, the results were validated according to the Dunn index together with
the Silhouette score. Although we have depicted the first three tested scenarios,
which are also the best ones, the experiment considers a total of 643 scenarios.

Subsequently, we investigated the reason why the cities were better arranged
into only two clusters. By analyzing indicators related to population and territory
extension, we found that 61.20% of the state’s population is in the first cluster
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Cluster 1
Cluster 2

Label
486
159

Cities

Discarded 1

Piracicaba

Marilia

Campinas

Sao Paulo

(a) Clustering Sao Paulo’s cities.

Tiny

Large

Small
Medium

Label

< 157.75 m²

> 511.86 m²

< 280.77 m²
< 511.86 m²

Area

Piracicaba

Marilia

Campinas

Sao Paulo

(b) Sao Paulo’s territorial extension.

Fig. 8: Investigating cities through clustering techniques; Figure 8a shows the
results of the clustering of topological features when removing the Sao Paulo city
from the dataset; this layout has an average Silhouette of 0.59 and Dunn Index
of 1.1. Figure 8b describe the area within the cities’ administrative boundaries.

and 38.80% is in the second one (see Figure 8a), and that the first cluster is
mainly populated with cities that are considered to be of tiny or small territorial
extension (see Figure 8b), while the second cluster has the opposite behavior.
Bearing in mind that our dataset does not imply any relationship between
indicators of territorial extension and population density, we concluded that
the relation that favored two clusters, as the arrangement with best values of
Silhouette and Dunn index, was the territorial extension of the cities. Hence,
we found evidence that there is a significant relationship between topological
features, territorial extension, and demographics of the cities of Sao Paulo state.

The relationship between the cluster arrangement and territorial extension
can be understood as the way cities organize within their available space. In fact,
regarding the territorial extension, 30.51% of the cities from the first cluster
are tiny-sized, 31.13% are small-sized, 25.78% are medium-sized, and 12.58%
are large-sized; whereas, 7.59% of the ones from the second cluster are tiny-
sized, 6.32% are small-sized, 22.78% are medium-sized, and 63.29% are large-
sized. Therefore, cities in the first cluster can be considered smaller and heavily
populated, while the ones in the second cluster are larger and less populated.

3.3 Discussions on results generalization

We have chosen to present a joint of direct findings and analytical conclusions in
our results section. This was done so that one can follow the practical application
of the proposed methodology in a way that can be adapted and generalized for
different domains and scenarios. Our methodology can also be used in non-urban
applications, such as in the characterization of the topology in any group of
complex networks, however, depending on the specificities of the domain, it may
be necessary to use different network metrics and features to be more effective.

Additionally, while our findings cannot be generalized for any set of cities, we
believe that the proposed methodology can be used to find non-trivial properties
in different urban scenarios and not only to the cities that shape the state of Sao
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Paulo. Comprising a straightforward framework of analysis that can be useful to
the academic community and cities’ governing body, e.g. planners and designers.

Finally, our proposal has intricacies that can be explored in further studies:
(1) using hierarchical clustering to reveal additional knowledge, which may also
demand prior expertise about the cities (e.g. history and geography); and, (2)
using more complex feature selection techniques such as fractal-dimension based
methods or by applying ones related to mutual information. Notice that, this
refinement might reveal other patterns of the data, but will not change the ones
we discussed; and, (3) including non-topological features to capture different
characteristics of cities, enhancing our methods capabilities and its versatility.

4 Conclusion

In this paper we proposed a three-folded method encompassing the data
Acquisition, Modeling, and Computation. Furthermore, our methodology
comprises the following phases: Data Acquisition and Preparation, Feature
Extraction and Selection, and Feature Vector Analysis; culminating in the use
of multidimensional projection and cluster analysis algorithms to assess feature
vectors of complex-network metrics. To validate our proposal, we investigated
the following hypotheses: (A) the network topology is a tool-set that can reveal
groups of cities with similar characteristics, potentially revealing disparities; (B)
although cities may share administrative boundaries with others, they cluster
with cities with no apparent geographical similarity; and, (C) there might be
interesting correlations between urban and/or territorial indicators and the
features extracted from the street-network topology of a given set of cities. Such
hypotheses were investigated by analyzing relations between 645 cities that
constitute the Brazilian state of Sao Paulo. Our main findings confirm the
hypotheses of our work, allowing us to state that, on a large scale, the topological
features of the cities can indicate, or even predict, their demography and that
cities group themselves by means of their territorial extension, which describes
the way that cities organize within their available space. Therefore, our main
contributions are: (i) the description of how the network topology is capable
of revealing groups of cities with similar characteristics; (ii) the correlation
analysis between the demography of the cities and their features; and, (iii)
the discussion of why cities cluster with other cities distant apart instead of
with those that they share boundaries with. As a future work, we will measure
the similarity between cities by means of non-topological features, looking for
discrepancies in the collective behavior that emerges from this same set of cities.
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