
Hyper-heuristic Online Learning for
Self-assembling Swarm Robots

Shuang Yu1[0000−0001−7428−2600], Aldeida Aleti1[0000−0002−1716−690X], Jan
Carlo Barca1[0000−0001−6939−4632], and Andy Song2[0000−0002−7579−7048]

1 Monash University, Clayton 3168, Australia
2 RMIT University, Melbourne 3000, Australia

Abstract. A robot swarm is a solution for difficult and large scale
tasks. However, controlling and coordinating a swarm of robots is chal-
lenging, because of the complexity and uncertainty of the environment
where manual programming of robot behaviours is often impractical. In
this study we propose a hyper-heuristic methodology for swarm robots.
It allows robots to create suitable actions based on a set of low-level
heuristics, where each heuristic is a behavioural element. With online
learning, the robot behaviours can be improved during execution by au-
tonomous heuristic adjustment. The proposed hyper-heuristic framework
is applied to surface cleaning tasks on buildings where multiple separate
surfaces exist and complete surface information is difficult to obtain. Un-
der this scenario, the robot swarm not only needs to clean the surfaces
efficiently by distributing the robots, but also to move across surfaces by
self-assembling into a bridge structure. Experimental results showed the
effectiveness of the hyper-heuristic framework; the same group of robots
was able to autonomously deal with multiple surfaces of different layouts.
Their behaviours can improve over time because of the online learning
mechanism.

Keywords: Hyper-heuristics · Online Learning · Swarm Robots · Robotic
Behaviors · Self-assembling Robots · Robotic Surface Cleaner.

1 Introduction

Robotics is a fast growing area due to the explosive development in Artificial
Intelligence. Robots can automate many tasks that are considered risky and un-
desirable for humans. In addition they may accomplish tasks that are considered
difficult for humans. One example is swarm robots where many robots, typically
small droids, can collaborate and behave cohesively in one accord to achieve
tasks that are difficult or expensive such as surveying, rescue and patrol.

A reliable and capable robot swarm can gain significant advantage in various
domains such as mining, agriculture, smart cities and even military applications.
However, coordinating a collection of robots is not a trivial task. All robots
need to operate collaboratively to achieve a common goal. Manually developing
behavioral strategies for each robot using a collaboration strategy to coordinate
them can be difficult and ineffective, especially when the environment is dynamic.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


2 S. Yu et al.

Instead we propose a learning based hyper-heuristic approach for swarm
robots. With the hyper-heuristic approach, we only supply low level operators
instead of a full control strategy. These operators are elements for constructing
instructions for various tasks and environments. More importantly, the instruc-
tions can be adjusted over time because of the learning mechanism. Therefore
it is not necessary to manually define the robot behaviors beforehand as the
performance of these robots can improve during execution.

As a case study, we apply the proposed hyper heuristic framework to a surface
cleaning problem, where multiple building surfaces need to be cleaned. Basic
moves and operators are supplied for the hyper-heuristic engine to build cleaning
strategies. The robots are required to clean varied surface layouts using different
swarm behaviours. Moreover the robots should be capable of self-assembly in
order to cross gaps in the surfaces and travel from surface to surface. Through a
range of test scenarios, we demonstrate the effectiveness of the proposed hyper
heuristic approach. Analysis on the learning behaviors is also present to give
insight into this method.

The rest of the paper is organised as follows: Section 2 reviews the related
work, Section 3 describes the proposed hyper-heuristic methodology. A case
study on self-assembly swarm robot behaviours demonstrates an implementation
of the methodology, and is given in Section 4; this also includes the implementa-
tion of the heuristic repository. Section 5 shows simulations of the system used
in the real-world application of cleaning multiple surfaces.

2 Related Work

Hyper-heuristics have been used in various complex problems, such as bin-
packing, timetabling and vehicle routing. The aim of hyper-heuristic approaches
is to design a generic method that can automatically generate algorithms from
a repository of low-level heuristics or operators to solve a given problem [2]. It
searches for solvers instead of solutions. To give a brief background of hyper-
heuristic methods, a tabu search hyper-heuristic is applied on nurse timetabling
and scheduling [4], [16] used a choice function to rank heuristics for selection,
and [3] explored the use of Genetic Programming as a hyper-heuristic, and
demonstrated it on Boolean Satisfiability problem and online bin-packing. Com-
bined with online learning, which continuously learns the knowledge while per-
forming actions, hyper-heuristics solve problems with dynamic environments.
For example, [20] performs online learning to assist hybridising Estimation Dis-
tribution Algorithms with hyper-heuristics in dynamic environments. In [8], to
determine shipper sizes for storage and transportation, reinforcement learning
with tabu search is used to modify the performance score for each low-level
heuristic at every decision point.

Regarding heuristic learning, there are enormous amount of existing studies
in robotics. However, most of them concern single robots, hence are not included
in our review. In robot swarms, the local control laws executed by every robot
give rise to overall system dynamics, which is defined as a swarm behaviour [14].

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


Hyper-heuristic Online Learning for Self-assembling Swarm Robots 3

Rule-based algorithms allow complex and collective behaviours to emerge from
local behavioural rules, such as collective building construction [21]. Heuristic
learning techniques have been widely used in robot swarms to guide navigation
(search and path planning), task scheduling, motion control, etc., but they are
all tailored to their intended applications, and are not re-usable for other pur-
poses, such as sequencing swarm behaviours. [14] defined the problem of swarm
behaviour composition, and proposed an off-line learning method to generate
behaviour sequences for a human operator to execute in a known and static en-
vironment. This lacks the ability to cope with dynamic environments. Moreover,
the existing methods require manual algorithm re-design from task to task, while
hyper-heuristics, on the other hand, are often used to automatically generate al-
gorithms for a new problem.

The feasibility of this will be demonstrated through a case study on self-
assembling robot behaviours. Self-assembling robots can physically join and form
larger structures, as seen for example in Swarmanoid [6] and REPLICATOR
projects [9]. They have demonstrated great mobility in complex environments
by crossing gaps and moving across surfaces that could not have been traversed
by a single robot. The Swarm-bot project [7] demonstrates the hardware imple-
mentation of completing tasks, such as retrieving heavy objects and passing over
holes in a collective manner.

All these systems require manual input, such as a human operator or a control
station, to determine and inform the robots when to start assembling/disassembling
and what behaviour to perform for different problems and scenarios.

3 Methodology of the Hyper-heuristics Framework

We first introduce the hyper-heuristic methodology that is proposed to guide
the self-assembling in a robot swarm.

Hyper-heuristics are built on heuristics. They treat heuristics as general pur-
pose building blocks to be simultaneously and iteratively applied to a prob-
lem [18]. More importantly, hyper-heuristics are problem-independent, and the
same repository of heuristics can be used to solve new problems.

3.1 Multi-robot Hyper-heuristic Structure

An overview of the proposed hyper-heuristics framework structure for swarm
robots is given in Fig. 1. Each robot is initialised with a starting heuristic,
then takes action corresponding to that heuristic. If the termination criteria
is satisfied, meaning the objective is accomplished, then the process stops. Oth-
erwise the robot behaviours are evaluated against the objective(s). Based on
the evaluation result, heuristics then are selected from the pre-defined heuristic
repository to construct new ones. All the robots will update their heuristics,
take actions then enter the next iteration of the process unless a termination
criterion is met.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


4 S. Yu et al.

Fig. 1: Overview of the methodology.

In terms of evaluation of the objective, domain knowledge is required. In
robotics, domain knowledge is usually dependent on the available sensors and
robot communication mechanisms. Performance evaluation represents some “ben-
efits” from the environment and can be translated and stored as performance
scores within each robot. These scores are used to influence the heuristic selec-
tion. The heuristic repository is also domain relevant, and contains a variety of
low-level heuristics.

3.2 Heuristic Construction

Our proposed hyper-heuristic structure allows the actions for a given problem
to be automatically constructed and updated at each time interval. The per-
formance of a heuristic measured in the environment is stored in each robot as
heuristic scores. Through online learning, the robots can gradually learn to select
better heuristics.

Heuristic Scores If there is no prior knowledge, heuristic scores are initialised
with the same value. The initial score can be obtained from prior learning. The
heuristic scoring method is inspired by Choice Function (CF) and Multi-armed
Bandit (MAB), as described in [16] and [5] respectively. Each robot calculates
the score of the last action locally for each heuristic based on the objective
function.

hit =
∑

(αft + βf ijt + γM i
t ), (1)

where

– ft is the objective function value evaluated at time step t,
– f ijt is the objective function value of heuristic i given the previous heuristic
j at time step t, and

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


Hyper-heuristic Online Learning for Self-assembling Swarm Robots 5

– M i
t is the MAB term for heuristic i at time step t.

α, β and γ are parameters that control the weight of each term on the overall
score of a heuristic. The performance of the heuristic and the joint performance of
pairs of heuristics are measured using the objective function. For instance, in the
case of cleaning tasks, ft would be the cleaning efficiency measured from robot
dirt sensors. The MAB term M i

t is introduced as in Equation 2 to compensate
for heuristics that are unexplored [5].

M i
t =

√
2 log

∑k
j=1 nj

ni
(2)

where k is the total number of heuristics and i represents the index of the
current heuristic. The MAB term is inversely proportional to how many times
the current heuristic has been used ni, and directly proportional to the total
number of times the other heuristics have been used

∑k
j=1 nj . This ensures that

unexplored heuristics are given more weight than the ones that have been used
often, which prevents the algorithm from becoming trapped in a local optima.

Learning the Heuristic Scores The scores Ĥt = {ĥ1t , ĥ2t ..., ĥkt } are updated
at the end of each iteration according to previous experience and current per-
formance, as shown in Eq. 3.

ĥit = θhit + (1− θ)ĥit−1 (3)

where ĥit−1 is the previous score of heuristic i, and θ is the learning rate. Higher
θ values favour recent knowledge over the accumulated knowledge.

Heuristic Selection The heuristic scores learned in the previous t iterations
affect the heuristic to be selected in the next iteration t+ 1. There are different
strategies that could be used to select the appropriate heuristic from a heuristic
repository. One of them is Greedy selection, always selecting the heuristic with
the highest score. Relatively worse heuristics would not be re-used even if it
may lead to better solutions when the environment changes. The second method
is Roulette Wheel selection (RW) [10]. A good heuristic has greater chance to
participate, while “bad” ones also have the chance to be selected. This method
is quick to explore heuristics. This is further discussed through simulations in
Section 5.

Group Acceptance and Update The robots can communicate to reach an
agreement on which heuristic to execute next. In software optimisation prob-
lems, after a selected heuristic is applied to the problem, hyper-heuristics use a
move acceptance method to determine if the heuristic, or the “move” should be
accepted or rejected [1]. In a robotic system, the move acceptance strategy is
“always accept”, because rejecting a heuristic means going back to the robot’s

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


6 S. Yu et al.

original state (position), which in the real-world is impractical and consumes en-
ergy. In addition, we use a decentralised group acceptance strategy which
only accepts heuristics that benefit the whole group.

For swarm robotics, decentralised systems are more robust, scalable and flex-
ible. No single robot possesses the entire swarm’s knowledge of the environment.
Every robot can evaluate a heuristic based on its local knowledge, and commu-
nicate the result to its neighbours.

The decentralised strategies are similar to that in [15]. A heuristic is accepted

if
∑N

n=1 dn ≥ δ, where dn is the robot decision on acceptance, N is the number
of robot decisions received, with ”accept the heuristic” as dn = 1, and reject as
dn = 0. δ is the acceptance threshold.

After the new heuristic is selected and accepted by the swarm, all the robots
will update their own heuristics to be the new heuristic, and take another action.

4 Case Study on Self-assembling Multi-robot Systems

To show the feasibility and effectiveness of the proposed hyper-heuristics method-
ology, we present a case study using self-assembling robots.

4.1 Problem Description

In self-assembling robots, swarm behaviours emerge from the physical connec-
tions and interactions between robots. A robot can be seen as a module and an
emergent behaviour can result from the interaction between these modules.

For example, robots can connect to cross gaps, scatter to cover surfaces, or
flock to stay close but separated. A repository of such basic behaviours B =
{b1, b2...bk}, defines the set of robot control laws that read sensor data, and
execute actions accordingly. The task is then, given a set of self-assembling robot
behaviours, and an objective function, construct a sequence of such behaviours
autonomously to maximize the objective value f(t) in unknown environments.

4.2 Implementation

To solve this problem, we consider a type of swarm robot behaviour as a heuristic,
which is defined by the control rules that take in environmental input and control
actions periodically.

Robots start with an initial heuristic, and the same score ĥi0 for each heuris-
tic in the repository. This is based on the assumption that the environment is
unknown, which means there is no knowledge of which heuristic is better. The
robots perform actions for a period of time guided by the initial heuristic, and
learn heuristic scores online according to the method described in Section 3.2.

Any robot can propose a candidate heuristic for the next time interval to the
group, and in order to physically achieve the group decision process described in
Section 3.2, the robots send communication messages to each other following the
diagrams in Fig. 3. A robot sends a candidate heuristic to neighbouring robots.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


Hyper-heuristic Online Learning for Self-assembling Swarm Robots 7

The neighbouring robots then run RW selections according to their locally kept
heuristic scores and compare their selections with others. If they match, the
neighbour will inform the proposing robot of its acceptance.

If the number of robots accepting passes the acceptance threshold dn, then
the group has collectively decided to accept the candidate heuristic and will
apply that heuristic for the next iteration. If the candidate heuristic is rejected,
another proposal will be made, and the process repeats until a candidate is
accepted by the group.

Fig. 3: Implementation of evaluation and group acceptance.

There are three benefits in this approach. Firstly, the robots do not require
a human operator or centralised control, making the group scalable and robust
against single-point failure. Secondly, it allows robots to collectively adapt to
unknown or dynamic environments. Lastly, the behaviour construction is not
problem-specific. New tasks only require the change of an objective function,
not any re-design of the hyper-heuristic. For instance, for surface cleaning tasks,
the area cleaned is used to evaluate the performance; for multi-robot rendezvous,
the distance to the meeting point would be the objective function.

4.3 Heuristic Repository

The heuristic repository for this cleaning task comprises: sweeping, bridging,
exploring, circling and flocking, as described below:

(a) Sweeping (b) Bridging (c) Exploring (d) Circling (e) Flocking

Fig. 5: Heuristic repository

Sweeping As shown in Fig. 5(a), the sweeping behaviour allows robots to phys-
ically connect to form a vertical line, and perform horizontal back-and-forth
movements.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


8 S. Yu et al.

Bridging Bridging behaviour enables the swarm to connect and form a bridge
structure, as demonstrated in Fig. 5(b). It allows a group of robots to cross gaps
and small obstacles, as a connection is formed between robots to keep them from
falling when they lose contact with the surface.

Exploring Exploring is a behaviour that allows the robots to scatter in random
directions (which change at random time intervals) on the surface, as indicated
in Fig. 5(c). To prevent any robot from moving outside other robots’ communi-
cation range, each robot keeps estimating its distance to the furthest robot in
range, and if the distance is outside a threshold, the robot moves towards its
furthest neighbour, until it is within the threshold again.

Circling Circling performs a spiral motion, following with straight lines in
random directions, as shown in Fig. 5(d). This is a cleaning pattern widely used
by floor cleaning robots.

Flocking This local controller enables robots to follow a flocking behaviour [17],
as illustrated in Fig. 5(e). This heuristic allows robots to stay relatively close
to each other, making it easier for the swarm to assemble when needed, while
preserving some degree of random exploration. Assume the position of the robot
P0 = (x0, z0). P (x, z) is the average position of neighbours, and O is the average
orientation of neighbours within the sensing range. A repulsion vector R(xR, zR)
prevents robots from being too close to each other, and R = −Pmin, where Pmin

is the relative position of the nearest neighbour. The alignment vector for each
robot P ′(x′, z′) is calculated as:

x′ = x+ Sx · cosO + xR

z′ = z + Sz · sinO + zR

where Sx and Sz are scaling factors, which can be determined empirically.

The obstacle and gap avoidance mechanism This is implemented for all
heuristics. In a complex environment, there could be obstacles which the robots
need to avoid and go around, and gaps that the robots cannot cross on their own.
In this case study, we use potential field based obstacle avoidance [19], which
applies a multiplier vmulti to linear velocity, and another multiplier ωmulti to the
robot’s angular velocity. The multipliers are calculated as follows:

vmulti = 1− e−
Krisedobs

Ravoid

ωmulti =

{
Kω(π/2− θobs), if π > θobs > 0

Kω(−π/2− θobs), otherwise

where Krise and Kω are control parameters to be tuned empirically, dobs is
the distance between obstacle and robot, and θobs is the angle between robot
orientation and the obstacle. If a gap is detected, the robot will rotate in a
random direction until it orients away from the gap, and continue to move.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


Hyper-heuristic Online Learning for Self-assembling Swarm Robots 9

5 Experiments and Results

The specific task in our experiment is building facade cleaning where multiple
surfaces exist. To move from surface to surface, robots need to physically connect
to move each other across surfaces. To clean the surface efficiently, robots need
to scatter on the surface according to the environmental layout. This means that
no single behaviour is able to clean multiple surfaces, and the problem requires
combinations of heuristics.

In the real-world, the outer surfaces of a building are often complex and large.
It is costly to build a map of each building for robot cleaners. Even if a map is
built, during the cleaning process, the changes caused by window opening/closing
or decorations will make the map inaccurate. In such a dynamic environment,
swarm behaviours should be adaptive and decentralised.

5.1 Experimental Setups

The experiments are simulated in Webots Simulator with emulated real-world
physics [13]. The robot model is based on the non-holonomic robots in [22], as
shown in Fig. 7. Each robot is equipped with differential wheels, a dirt sen-
sor, obstacle sensors, wireless communication, suction cups, cleaning wipes and
a gripper arm to connect to a neighbouring robot. The robots are simulated
to clean at the maximum speed of 2.98m2 per time interval of 40s, which for
simplicity, we define as one unit area. The table in Fig. 7 contains the configura-
tion of the simulated robots. To model cleaning in the real world, robots collect
14.9% of the available dirt each time when travelling at the maximum speed of
0.5m/s. Every robot is controlled by the hyper-heuristic controller as described
in Section 3.

The objective function f(t) indicates robot cleaning efficiency, which is given

by: f(t) =
∑

(LtDt)
T where Lt is the distance travelled since the last measure, Dt

is the dirtiness reading from the dirt sensor at iteration t, and T is the amount
of time the current heuristic is applied. The termination criteria is set to be
terminating after 50 iterations.

Radius 0.3m

Maximum Cleaning Speed 0.0745m2/s

Maximum Linear Velocity 0.5m/s

Maximum Angular Velocity 0.66rad/s

IR Sensing Range 0.53m

Wireless Communication Range 200m

Fig. 7: LEFT: robots forming a larger structure. The lighter areas have been cleaned
by robots. RIGHT: robot configurations of the simulation

Parameter tuning for the system involves two independent stages. The heuris-
tic parameters are tuned individually as separate control algorithm units, in

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


10 S. Yu et al.

order to achieve better performance by themselves. The hyper-parameters are
tuned with the whole system integrated. In this application, Iterated Racing
(irace) tuning method [11] is used because it is effective and prunes the space of
parameter value combinations that have to be checked. The tuning results are
shown in Table 1, and are the parameters used in all experiments.

Table 1: Tuned values of hyper-parameters and controller parameters.

Heuristic Parameters

flocking: Sx 0.5

flocking: Sz 0.5

Krise 1.0

Kω 10.0

Ravoid 0.46m

Hyper-parameters

Learning rate θ 0.29

Choice Function α 0.99

Choice Function β 0.01

Choice Function γ 0.9

Group acceptance δ 0.5

Time interval length T 40s

5.2 Robustness In Different Environments

Four different layouts of facade surfaces are used in the experiments as shown
in Fig. 8. Environment (a) is a flat surface that is 8m × 8m, bounded by four
barriers; environment (b) is the same size, with 50 obstacles; (c) has four gaps on
the surface, which single robots cannot cross; (d) has four gaps and 30 obstacles.

The positions of obstacles and gaps are randomly generated, thus different
in each experimental run. Robots have no prior knowledge about the surfaces.

Fig. 8 shows the cleaning progress of the robots using the hyper-heuristics at
5, 25 and 50 iterations. Since the purpose of the experiments is not to show the
completeness of cleaning, but the effectiveness of behaviour sequence construc-
tion, 50 iterations are adequate to show the characteristics of the performance
curve, as detailed in the resulting plots. It can be seen that the robots are able
to perform the cleaning task continuously and robustly for 50 iterations, as the
area cleaned over the four environments is continuously increasing. In environ-
ments (c) and (d), robots are able to automatically assemble to move across
surfaces, and disassemble on new surfaces. This shows the feasibility of the pro-
posed hyper-heuristic methodology on self-assembling robots, and that it can be
applied in real-world applications.

We further investigate the performance in each environment in Fig. 10. For
comparison, a hyper-heuristic with no learning is implemented, where heuristics
are randomly sampled from the repository at each decision point. To reach all
surfaces, and move effectively in environments with many obstacles, the swarm
needs to learn the heuristics that perform better in these scenarios. Comparison
results with the baseline method shows that the online learning hyper-heuristic
is successful in finding sequences that perform better, based on the improve-
ment of 28.86%, 37.34%, 21.51% and 18.86% in each environment, and overall
improvement of 27.52%.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


Hyper-heuristic Online Learning for Self-assembling Swarm Robots 11

(a) (b) (c) (d)

Iteration
5

Iteration
25

Iteration
50

Fig. 8: Cleaning progress of the swarm at 5, 25 and 50 iterations in four types of
environmental layouts: (a) flat empty surface, (b) surface with obstacles (indicated by
red blobs), (c) five surfaces separated by gaps (black stripes), and (d) five separated
surfaces with obstacles.

We also plot the efficiency improved by learning in each iteration:

e(t) =

∑t
i=1(fLi − fNL

i )∑t
i=1 f

NL
i

,

where fLi and fNL
i are the areas cleaned (objective values) at iteration t by

the swarms with and without learning respectively. It can be observed from
the results shown in Fig. 11 that in the majority of the cases, the behaviour
construction with learning is superior (95% of the points are above 0). Also the
method gets better with time, as shown by the blue solid line representing the
trend, indicating that our method continuously improves at learning the best
behavior.

This proves that without knowing each particular layout, the robots are able
to learn the suitable heuristics and autonomously clean multiple surfaces. This
offers the advantage of performing tasks without prior knowledge of the environ-
ment, and without human supervision. It means that human workers will only
need to transport the robot cleaners from building to building and install them
on the starting surface, without providing prior knowledge of the building facade
layout. Very little or no re-programming of the robots is required between tasks,
and no human intervention is needed during the cleaning process.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


12 S. Yu et al.

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n

it
 A

re
a

 C
le

a
n

e
d

Environment: Empty

No learning

Online Learning

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n
it
 A

re
a
 C

le
a
n
e
d

Environment: Obstacles

No learning

Online Learning

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n

it
 A

re
a

 C
le

a
n

e
d

Environment: Gaps

No learning

Online Learning

10 20 30 40 50

Iteration

0

5

10

15

20

25

30

U
n
it
 A

re
a
 C

le
a
n
e
d

Environment: Gaps and Obstacles

No learning

Online Learning

Fig. 10: Comparing mean performance of online learning and no learning over 50 ex-
perimental runs

0 10 20 30 40 50

Iteration

-0.4

-0.2

0

0.2

0.4

0.6

D
if
fe

re
n
c
e

Empty

Gaps

Obstacle

Gaps and obstacles

Fig. 11: Performance difference for every iteration between online learning hyper-
heuristics and no learning.

5.3 Comparison of Heuristic Selection Methods

In this part we compare three different heuristic selection methods as discussed
in Section 3.2: Roulette Wheel selection, Greedy selection and Simple Random
selection, which randomly samples heuristics from the repository. Each group
performs cleaning tasks for 200 runs across the four types of layouts (Fig. 8).
Fig. 12 plots the performance distribution grouped by environment types.

Through Mann-Whitney U tests [12], it can be confirmed that both RW and
Greedy methods have statistically better performance than Simple Random.
Greedy has the best performance in empty and obstacles environments, while
RW outperforms Greedy in environments that have gaps. RW also gives 48.19%
less variance in performance over the four environments. This is because RW se-
lection hyper-heuristic is quick to explore the heuristics that have not performed
the best, but could lead to better performance later, therefore is more adap-
tive in complex environments. Greedy hyper-heuristic is very effective in simple
environments, such as the empty surface, but if the user requires robustness in
different environment types, RW is a better option.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


Hyper-heuristic Online Learning for Self-assembling Swarm Robots 13

Fig. 12: Comparing three hyper-heuristic selection methods: Roulette Wheel, Greedy
and Simple Random over four types of environments.

6 Conclusions

This study proposed a novel hyper-heuristics methodology combined with on-
line learning to coordinate swarm robots, in particular, self-assembling robots.
Building surface cleaning is used as a case study to evaluate the framework. The
task was carried out on a real-physics robot simulator, and a range of surface
types were used as test scenarios. The experiments verify that the robot swarm
can adapt in different environmental layouts and automatically find appropriate
actions to fulfill the given task without manual programming and centralised
control. The study also shows that the performance of the robot swarm can be
improved through online learning of heuristic scores.

Hence we conclude that hyper-heuristics are effective and advantageous in co-
ordinating swarm robots in complex tasks. With the proposed approach, robots
can construct and adjust behaviours based on a repository of heuristics. Com-
bined with online learning, robots can adapt to different environments and dif-
ferent types of tasks. This feature is particularly beneficial for dynamic environ-
ments and complex tasks where prior programming is often difficult.

References

1. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Handbook of
metaheuristics, pp. 457–474. Springer (2003)

2. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society 64(12), 1695–1724 (2013)

3. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring hyper-heuristic methodologies with genetic programming. In: Computa-
tional intelligence, pp. 177–201. Springer (2009)

4. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for
timetabling and rostering. Journal of heuristics 9(6), 451–470 (2003)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13


14 S. Yu et al.

5. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: Proceedings of the 10th annual conference
on Genetic and evolutionary computation. pp. 913–920. ACM (2008)

6. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a
novel concept for the study of heterogeneous robotic swarms. IEEE Robotics &
Automation Magazine 20(4), 60–71 (2013)

7. Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T.H., Nouyan, S., Ampatzis,
C., Deneubourg, J., Baldassarre, G., Nolfi, S., et al.: The swarm-bots project. In:
International Workshop on Swarm Robotics. pp. 31–44. Springer (2004)

8. Dowsland, K.A., Soubeiga, E., Burke, E.: A simulated annealing based hyperheuris-
tic for determining shipper sizes for storage and transportation. European Journal
of Operational Research 179(3), 759–774 (2007)

9. Levi, P., Meister, E., Van R, A., Krajnik, T., Vonasek, V., Stepan, P., Liu, W.,
Caparrelli, F.: A cognitive architecture for modular and self-reconfigurable robots.
In: Systems Conference. pp. 465–472. IEEE (2014)

10. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance.
Physica A: Statistical Mechanics and its Applications 391(6), 2193–2196 (2012)

11. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives 3, 43–58 (2016)

12. McKnight, P.E., Najab, J.: Mann-whitney u test. Corsini Encyclopedia of Psychol-
ogy (2010)

13. Michel, O.: Webots: Symbiosis between virtual and real mobile robots. In: Inter-
national Conference on Virtual Worlds. pp. 254–263. Springer (1998)

14. Nagavalli, S., Chakraborty, N., Sycara, K.: Automated sequencing of swarm be-
haviors for supervisory control of robotic swarms. In: Robotics and Automation,
IEEE International Conference on. pp. 2674–2681. IEEE (2017)

15. Özcan, E., Mısır, M., Kheiri, A.: Group decision making hyper-heuristics for func-
tion optimisation. In: UK Workshop on Computational Intelligence. pp. 327–333.
IEEE (2013)

16. Rattadilok, P., Gaw, A., Kwan, R.S.: Distributed choice function hyper-heuristics
for timetabling and scheduling. In: International Conference on the Practice and
Theory of Automated Timetabling. pp. 51–67. Springer (2004)

17. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH computer graphics 21(4), 25–34 (1987)

18. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A dynamic multiarmed bandit-gene
expression programming hyper-heuristic for combinatorial optimization problems.
IEEE Transactions on Cybernetics 45(2), 217–228 (2015)

19. Seng, W.L., Barca, J.C., Sekercioglu, Y.A.: Distributed formation control in clut-
tered environments. In: Advanced Intelligent Mechatronics, IEEE/ASME Interna-
tional Conference on. pp. 1387–1392. IEEE (2013)

20. Uludag, G., Kiraz, B., Uyar, A.E., Özcan, E.: Heuristic selection in a multi-
phase hybrid approach for dynamic environments. In: Computational Intelligence
(UKCI), 2012 12th UK Workshop on. pp. 1–8. IEEE (2012)

21. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014)

22. Yu, S., Barca, J.C.: Autonomous formation selection for ground moving multi-robot
systems. In: IEEE International Conference on Advanced Intelligent Mechatronics.
pp. 54–59. IEEE (2015)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_13

https://dx.doi.org/10.1007/978-3-319-93698-7_13

