
Data Allocation based on Evolutionary Data
Popularity Clustering

Ralf Vamosi1, Mario Lassnig1, and Erich Schikuta2

1 CERN, Geneva, Switzerland
2 University of Vienna, Faculty of Computer Science, Vienna, Austria

Abstract. This study is motivated by the high-energy physics experi-
ment ATLAS, one of the four major experiments at the Large Hadron
Collider at CERN. ATLAS comprises 130 data centers worldwide with
datasets in the Petabyte range. In the processing of data across the grid,
transfer delays and subsequent performance loss emerged as an issue.
The two major costs are the waiting time until input data is ready and
the job computation time. In the ATLAS workflows, the input to com-
putational jobs is based on grouped datasets. The waiting time stems
mainly from WAN transfers between data centers when job properties
require execution at one data center but the dataset is distributed among
multiple data centers. The proposed novel data allocation algorithm re-
distributes the constituent files of datasets such that the job efficiency
is increased in terms of a cost metric. An evolutionary algorithm is pro-
posed that addresses the data allocation problem in a network based on
data popularity and clustering. The number of expected job’s file trans-
fers is used as the target metric and it is shown that job waiting times
can be decreased by faster input data readiness.

Keywords: Grid computing, Data layout, Distributed data manage-
ment, Data allocation, Data placement, Popularity, Data clustering

1 Introduction

Grid computing aggregates distributed computing, storage, and network re-
sources to support unified, secure, and coordinated high-level access to the com-
bined capabilities [9].

The ATLAS experiment at CERN acquires, stores, and processes data for
detector operation and physics analysis. For these purposes, it utilizes part of
the worldwide Large Hadron Collider (LHC) Computing Grid (WLCG), which
is here referred to as the grid.

The data acquisition process deals with huge quantities of information. After
passing a hardware trigger, event data from the experiment is immediately stored
in form of files at the local CERN data center. Experimental data is usually
packed into files in the GB range, which are subsequently transferred to other
data centers. Computational jobs, which are referred to as jobs, read sets of files
which contain different numbers of files. Those file collections are referred to as

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


2

datasets. Each job is assigned to a data center in order to minimize the expected
total waiting time. A job must wait for a free job slot, i.e. until the computation
can commence on a worker node of the data center. After a data center is chosen,
the job has to wait for the input data, i.e. its input dataset.

2 Motivation

In the LHC Computing Grid, physicists from institutions all over the world
submit tasks to process stored data on the grid. To perform analysis, users
prepare tasks on specific sets of data, which are then executed in form of jobs
at the shared resources of the grid.

In such data-intensive workflow, the network represents a bottleneck for data
transfer due to the high amount of file transfers triggered by jobs: Every time the
corresponding computation takes place at a node, missing input data must be
shipped over the network to the target node. The posed network load resulting
in transfer delays represent a time-consuming part of any data-intensive job in
the grid. This is especially problematic due to the fact that computational job
properties, e.g., memory requirements, do not conform to the amount of available
storage. There can be data centers with large storage systems but few processing
capabilities, and vice versa.

The current operating standard procedure for storing data across storage
resources is to distribute data uniformly in free storage resources. To cope with
this situation, users interact with the grid storage system, cleaning and moving
data with the aim to keep work-in-progress data sets on available data centers
and to remove obsolete data sets to free storage.

The following simplified example provides an incentive for the optimization
process. Three data centers supplying computing and storage resource are as-
sumed. Without loss of generality, each up- and downlink shall be symmetrical.
The time period in which a job waits for its input dataset is referred to as ‘wait-
ing time’ Twait. In this scenario, the average Twait between data center 1 and 2
is 2 h, between data center 2 and 3 is 0.5 h, and between data center 1 and 3 is
1 h yielding approximated Twait coefficients of

Twait =

0 2 1
2 0 0.5
1 0.5 0

h

where we assume that data center internal LAN links do not pose delays. The
first data center has a large storage capacity, whereas the others don’t. In general,
statistics must be gathered about the usage of the network, i.e. jobs, and their
access patterns in order to compute expectation values:

– Datasets and their files are associated with access likelihoods
– For a job, likelihoods emerge for running on data centers

Now estimations for the waiting time for two different scenarios are given. The
first scenario covers jobs with high memory requirements running at data center

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


3

state data center 1 data center 2 data center 3 Twait

scenario 1
uniform 33 % files 33 % files 33 % files 2 h
optimized 50 % files 50 % files 1 h
best 100 % files 0 h

scenario 2
uniform 33 % files 33 % files 33 % files 1.66 h
optimized 50 % files 50 % files 1.33 h
best 100 % files 0.5 h

Table 1. File allocation and the effect of optimization in two use cases.

1. Only data center 1 is capable of running this job type. Different possibilities
of data allocation for these jobs and respective waiting times are illustrated in
Table 1.

Scenario 2 considers jobs that are being balanced out across the computing
resources. In this case, 33 % at each of the three data centers. Data allocation
and observed values are depicted in Table 1.

In scenario 1, data center 1 is able to accommodate the set of jobs, thus
the best outcome can be achieved through placing all possible input files to
the corresponding storage node. Upon assignment of these jobs, the job broker
places them at data center 1. The job execution can launch promptly since the
input files are available at this site. Twait vanishes. Even in the scenario 2, where
the considered jobs are being mapped equally likely across all data centers, the
best optimization results in a reduction of waiting time from 1.66 h to 0.5 h.
This example illustrates the basic idea although the network load was assumed
constant with fixed delay times over network links. The considered jobs represent
a small amount of the total quota.

3 State of the Art

In the context of data sharing, there are two shortcomings that have been studied
and trialed extensively: Data allocation and duplication of data. Data allocation
should reduce default communication cost. Replication results in multiple data
source nodes to enable routing from these sources to the target node. Replication
is not addressed in this work.

File allocation problem and data allocation problem is here used interchange-
able, even though this may not be true from a strict semantic point of view and
both generally differ from each other. In the data allocation process, the objects
dealt with are not necessarily fixed, or unknown a priori. The relationship be-
tween these objects can be complex and access to some of the data may demand
several transmissions across involved data.

The data allocation problem has been analyzed in the past when distributed
databases were studied and parallelization had to be utilized. In [8], a linear

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


4

model for file allocation with storage and transmission costs is elaborated, and
the simulation covers five files and three computers.

In [11], a store-and-forward computer network is investigated. Network con-
straints are considered to be availability and delay, which is demonstrated in a
model with a total of 10 files.

Data placement is modeled on different abstract levels in [3] and it is proven
that the data placement problem is extremely difficult to solve. It is shown that
data placement problem is NP-Complete.

The file allocation problem is discussed under concurrency constraints to
build a model with storage cost and communication cost in [14]. Constraints
of the model are the multiplicity of databases, variable routing of data, and
available capacity of the network nodes.

Attempting to cluster datasets according to their interdependency and sub-
sequently to store the clusters on separate machines have been investigated [9].

The problem has been coined as solving a multi-constraint hypergraph par-
titioning problem for task and data assignment [6].

A further clustering algorithm is described in [19] that uses k-means algo-
rithm for finding locations for the clustered data, resulting in task allocation
to the data centers with most of the input dataset. This is comparable to the
ATLAS workflow.

Evolutionary algorithms were also applied to this kind of problem. In [10],
data allocation strategies have been investigated to reduce transaction costs. A
genetic algorithm was used here, with the goal of limiting communication effort
between data centers by balancing the load.

Replication and placement of files across different nodes can lead to im-
provements in job execution, makespan, and bandwidth [7]. However, caution
is advised since a priori movement of data to improve the access to data can
lead to a bottleneck in network performance between data centers. To avoid
drops in performance, data replication is used in the ATLAS grid very rarely
and selectively [12].

Further efforts have been undertaken in previous studies for database op-
timizations. The authors of [18] discuss database allocation optimization and
propose a mathematical model concerning average waiting time. Other database
approaches attempt to arrange data effectively over the network nodes, such as
in [1,2,4]. However, these studies investigate idealized database cases. For ex-
ample, they focus on a single query type or do not consider any constraints on
communication characteristics. Room for improvement would comprise user be-
havior and workflow characteristics. Analysis of access patterns can be beneficial
for network utilization.

A well-known approach is ranking data according to the number of accesses
per time unit. This characteristic is referred to as data popularity [5]. In [5], a
successful popularity model is established which uses different structured and
unstructured sources for collecting historical data. A popularity model is im-
plemented as an autonomous service for finding obsolete data and used in the
cleaning process [13,17].

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


5

Summing up, the actual research on data partitioning and allocation tech-
niques is specific or limited. Due to complexity and variety, simplified models
and local optimizations were studied and applied. A thorough analysis of data
usage and data optimization point of view for data grids is necessary. Storage
resources and the use of data has to be appropriately treated in the process of
file placement [16,15]. The lack of information has prompted this work, where
grid computational application uses data in big quantities. Research on data
management will have a strong impact on usability, performance, cost and the
acceptance of worldwide spanning grids on a large scale.

4 An Evolutionary Data Allocation Approach

4.1 Idea

For data-intensive workflows, an evolutionary data cluster and allocation algo-
rithm is proposed to minimize the overall network load and thereby reducing
average waiting times across the network.

The approach is based on an evolutionary algorithm generating solutions to
the allocation problem built upon two heuristics to improve the decision-making
process. Thus, the data allocation approach rests on two solid pillars which are
combined in a novel way:

The algorithm’s first pillar is calculating the data dependency and thus pos-
sibly clustering the dataset on correlated features. These features are subject
to big data studies. Today, machine learning algorithms classify and assess the
multi-dimensional datasets of ATLAS already. Filters and clustering can be ap-
plied to extract parameters and collect statistics.

The second pillar of the proposed algorithm is the popularity of datasets
that stipulates how likely the dataset will be accessed in the near future. The
best practice would be to allocate more popular files to more efficient, higher
performing data centers.

4.2 Data Dependency

Data dependency is used for estimating the likelihood of files being in the same
input dataset essential to perform a job. Files within datasets with high depen-
dency provide more similar features, e.g. type of contained data, naming etc.,
and are more likely to be part of a new common dataset processed together
by a job.

In this context, a simple idea relates to clustering highly dependent datasets
together such that new datasets for upcoming jobs are more likely to find the
majority of those files at a single node. Thus, fewer files have to be transferred
to complete the datasets at the target node. The fewer WAN transfers per job,
the more LAN transfers per job occur. In general, these data center internal
transfers occurring between the storage node and the worker node at the same
site are, however, not the focus of attention, since they are sufficiently and quickly

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


6

executed, thus they may be ignored in terms of performance. The use of internal
LAN transfers rather than WAN transfers reduces the bottleneck effect on the
global WAN network.

In the implemented simulation, dataset dependency (DSD) values are mapped
to pairs of datasets, i.e., DSD : {DS}×{DS} → [0, 1], (DSn, DSk) 7→ DSDn,k.
The mapping can be normalized to 1 for each sample set.

This is represented as a symmetrical matrix with 1s in the main diagonal
and values < 1 otherwise.

4.3 Data Popularity

Data popularity describes the usage importance of files by the number of oc-
curred accesses to them. The chosen time window and the weighting for count-
ing are not subject here. It is used as a measure for how likely a data ele-
ment, here files in datasets, will be accessed in the near future. More often
accessed datasets will be more likely to be accessed in the near future. In the
simulation, normalized data popularity values are assigned to all datasets, i.e.,
Pop : {DS} → [0, 1], DSn 7→ Popn.

Figure 1 depicts popularity values of datasets in the test cases with 20 %
respectively 35 % access rate to popular data. The leftmost bin comprises 80 %
respectively 65 % accesses to data with popularity value 0, i.e., the portion of
data for which no conclusion about popularity could have been drawn. It can be
seen that very popular data is used more often than less popular data.

4.4 Data Arrangement S

The solution of the allocation problem is denoted as a storage matrix of a set
of possible storage matrices, S ∈ S, by clustering and storage allocation. The
storage matrix S is a permutation matrix specifying the mapping of files to
storage nodes. The set S contains the matrices which obey the storage constraints
in the inequality 1. Jobs read file collections expressed by so-called file datasets.
Files of those datasets are arranged across storage nodes as defined by the output
of the algorithm, S.

4.5 Algorithm

Every file in the grid is assigned to a respective dataset. Overlaps are omit-
ted. However, if original datasets have overlaps, these can be eliminated before
applying test jobs: Intersections become new sub-datasets with, for example,
composed values for popularity and dependencies. For test job samples, datasets
are generated out of existing ones based on popularity, so that more popular files
are more likely moved into new datasets. In this analysis, approximately a half
of the files have a popularity value of 0 which means there is no corresponding
information on these files. So far, these files would be considered unclassifiable
if, for instance, they were of a type never seen before.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


7

Fig. 1. Access frequencies of datasets with and without popularity. Datasets with pop-
ularity are accessed with a rate of 20 %, and 35 %. The leftmost bin implies the majority
with 0 popularity.

The chosen data centers provide all storage capacities and computing power,
i.e. they are represented as computing and storage nodes in the simulation. The
simulation can be parametrized with special cases: For example, if a data center
represents a data warehouse or cloud storage, the workload manager could be
set to omit this node and no WAN transmission would occur to this node in
Equation 1.

The proposed algorithm generates a file arrangement S with the goal to
minimize the expected number of WAN transfers per job. After each evolutionary
iteration, which produces a version of S, the target metric is evaluated again and
the evolution takes place as described in details below. Given a test job sample,
the problem can be formalized with S as a parameter and the expected cost
functional #txWAN as a target metric. #txWAN can be decomposed into single
#txWAN (i) giving the triggered WAN transfers for job i:

argmin
S

E[#txWAN ] ≈ argmin
S

∑
j∈{jobs}

#txWAN (j)

such that

ST ×wfile ≤ wstorage

(1)

wherewfile is a column vector which represents the file sizes for file1,...,fileM
and wstorage is a column vector which represents the storage capacities of data

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


8

centers 1, 2, ..., N. The expectation value is denoted as E. A normalization is
not needed for argmin seeking a minimum of the expression.

The Algorithm 1 illustrates the working principle of the approach. Step 1,
building the DSD matrix for the given datasets, must be performed only once.
Step 2.1 covers the evolutionary part of the file partitioning. A clustering al-
gorithm of the algorithm evaluates the file affinity to the constructed partitions
S1, ..., SN by the dataset dependency matrix. Datasets with higher DSD belong
together and their files should be placed in one common partition if possible. The
coarseness on the dataset level rather than file level is beneficial for a quicker
evaluation. Datasets are logical clusters themselves, whose properties allow com-
parison to each other. In each solution, i.e., an entity in the population, a random
number of partitions prefer high popularity data, whereas the rest of the par-
titions do not. Files are collected in a random trajectory which determines the
aimed solution in the solution space.

Step 2.2, after constructing the partitions S1, ..., SN , they are logically
mapped to the data center storages in terms of minimization of the target metric
in Equation 1. If a partition does not fit into a data center, the drop-out files
will be mapped to other free gaps of storages not yet completely filled under the
application of the target metric as well.

Step 2.1 rapidly results in generations with a fixed number of partitions. The
storage constraint holds in step 2.2 if a total set of files is picked such that there
is sufficient total storage capacity under the considered circumstances. Should
the capacity constraint not be obeyed, only a subset may be allocated in place
of the optimized storage nodes, and the complementary subset, which must be
discarded, are allocated to storage nodes outside of the optimized storage nodes.
The complementary subset consists of the files less worthy according to the
heuristics.

A less strict optimization goal could be addressed by dealing with a subset
of the total files, but a deeper analysis would exceed the scope of this work.

Each entity in the population is evaluated by its achieved performance in
terms of the metric in Equation 1. It is evaluated by simulating a job sample
set and summing up incurred WAN data transfer values for each computing job.
Over several iterations, evolution continues until no further improvements can be
achieved. The process comprises selection, mutation, and crossover steps which
are iteratively applied in-between:

– Mutation partially alters clustering of files and mapping those partitions
to the storages as described above. The prior outcome S transforms into
another S̃.

– Crossover merges the initial clustering and mapping of two entities into the
common offspring. If both entities share overlapping files mapped to different
storages, not yet assigned files of those overlaps are assigned uniquely for a
single target storage. This avoids illegal double use since files can only be
selected once in the allocation.

– Selection keeps the best entities. If the population starves, then new entities
are added to enrich the pool of solutions.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


9

// Generate dataset dependency values (DSD) , i.e. pairwise
correlation values (interdependencies) (step 1)

1 DSDn,k ← cor(n, k) ∀n, k ∈ {datasets}
2 N ← number of data centers

// Generate population (step 2)
3 while {termination condition not met} do
4 while {population starved} do

// Add one entity S ∈ S with N random dataset clusters Sn ∈ S
5 k ← random[1, N ]
6 S ← (S1 = {}, S2 = {}, ..., SN = {})
7 datasets← available datasets on storage1,..,N
8 while {datasets.nonempty()} do
9 foreach {Sn=1,...,k} do

10 Sn.add(datasets.get(Sn.dependency(high), popularity(high))
11 end
12 foreach {Sn=k+1,...,N} do
13 Sn.add(datasets.get(Sn.dependency(high), popularity(low))
14 end
15 end
16 population.add(S)

17 end
// Make compatible partitions allocated to network storages for

each entity
18 foreach {S ← population.next()} do
19 (S1, ..., SN )← (S.S1, ..., S.SN )
20 foreach {Sn} do
21 foreach {storage{1,...,N}} do
22 storagek.add(Sn.top(popular)) // add datasets
23 Sn.remove(storagek) // remove allocated datasets
24 end
25 end
26 foreach {Sn.nonempty().top(size)} do

// not allocated
27 foreach {storagek.nonfull().top(size)} do

// not yet completed storage, biggest first
28 storagek.add(Sn.top(popular)) // add datasets
29 Sn.remove(storagek) // remove allocated datasets
30 if {Sn = {}} then
31 break // inner loop
32 end
33 end
34 end
35 end
36 population.apply({selection, mutation, crossover})
37 end
38 return population.best();

Algorithm 1: Popularity-based data allocation algorithm

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


10

5 Evaluation

This section shows the efficiency of the algorithm on the basis of the simulated
network of data centers. The data centers should represent the most important
ones of the grid in reality, i.e., they provide most of the total capacity. This
set of data centers can be extended. However, from the perspective of data
management, the rest of the grid holds less significance, since the situation would
considerably improve through better management just in these data centers.
Datasets are present with the following characteristics:

– Datasets comprise 10 to 40 files to reflect dynamic dataset sizes.
– A popularity value is assigned to each dataset.
– A dataset dependency value (DSD) is assigned to each pair of datasets.

A job sample is generated in the following way:

– Each new job is assigned to a newly generated dataset derived from the pre-
defined datasets covering all files. Thereby random files are selected from the
pre-defined datasets.

– The workload manager, i.e., job broker, is set to aim at WAN transfer mini-
mization.

Each of the data centers can hold between 200 and 2000 files for the sake of
run time of the simulation on a single personal computer. Capacities are chosen
randomly at the start of the simulation. This adds up to approximately 20 k files
and 1 k datasets. The simulation initiates multiple runs in different configura-
tions. Jobs access different shares of the popular datasets in each configuration.
A configuration with 20 % popularity use significance that jobs have an expected
20 % access rate to datasets with some popularity and 80 % to purely random
datasets, including the majority, i.e. datasets with popularity=0. Highly popular
datasets are accessed more likely than others, as seen in Figure 1. Figures 2 and 3
present the results of the optimized file allocations for different configurations:

– The random case shows the initial random dataset spread across available
network storages.

– The optimized case gives the achieved outcomes from the optimization algo-
rithm in the experiment.

It is evident that the utility of popularity declines as the number of data storages
in the network increases. This could contribute to a weakness of the algorithm’s
evolution process in varying the target popularity of the different partitions. In
addition, the number of WAN transfers per job increase by the number of possible
network nodes. Input data is spread across more network nodes. Furthermore,
there are more network nodes where a job can execute, increasing the uncertainty
for target nodes where the input files are requested and transmitted to.

A better outcome can be achieved in networks with a smaller number of
data storages. The complexity of the optimization problem grows due to bigger

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


11

Fig. 2. Runs with 10 data centers comprising different job configurations in terms of
used data popularity

networks and so the rise in the number of possibilities in the solution space wors-
ens the convergence rate. The descent of the cost function towards higher total
popularity rate is explained by more predictability on some part of the file pop-
ulation. In any case, a strong deviation from this pattern can be observed by the
randomness of the load and the data access in the experiment. Random effects
in choosing worker nodes and associated data may lead to distorted results.

The workload manager plays a central role in the technique proposed in this
work. A network metric, such as average network load, depends directly on the
task of the workload manager. The job has to be placed most likely to the node
with the majority of input files. In the hypothetical worst case, jobs would run
just remotely from the input data. This situation would bear the maximum load
on the network due to the fact that all the input files have to be transferred.

This goes in hand with the described data management which is rooted
in the described DSD clustering. The used clustering adjusts to the stochastic
usage of global data. Hashing algorithms take the reverse way which provides
data arrangements with efficient parallelism to maximize throughput. However,
in this consideration, since all network nodes provide some portions of data,
parallelization occurs through the workload manager combined with the data
management of interest.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


12

Fig. 3. Runs with 20 data centers comprising different job configurations in terms of
used data popularity

6 Conclusion

The proposed algorithm clusters and allocates grid data in a more sophisticated
way by focusing on the importance of data and minimizing the effort by chang-
ing the solution slightly. More popular data should be held together at better
performing data centers. With this form of data allocation policy, less overall
network load and shorter network waiting times occur, which reduces the cost
of computational jobs in terms of expected WAN transfer time. The adaptable
model uses a rapid popularity-based partitioning for optimized clustering that
in general can be applied to other workflow environments and used for various
control and optimization tasks in dynamic systems.

However, so far, the proposed model represents an idealized toy model which
was optimized in terms of the overall inter-data center communication on a basis
of transparent data in a uniform grid. Further constraints must be imposed in
order for the model to cope with a real case. Real data may not necessarily be
transparent in the first step. The evaluation of access patterns could be extended
over time which would yield more information. Also, the effects of replication of
files and dataset overlaps were not investigated in this work. Equal copies of files
should be declustered in the network. This means, different storage nodes with
sufficient distance between one another are selected for storing equal copies of
files. Furthermore, data sets placed by the user should not be moved to another

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


13

storage location. This would restrict the total optimization. However, optimiza-
tion on the enabled subsets can be carried out by the proposed algorithm. Fixed
subsets can be flagged accordingly and must not be moved automatically. User
interactability can be incorporated into a grid service of the proposed algorithm
to enable or disable datasets. Users could identify interesting datasets that would
be the focus of computation, or alternatively single out the uninteresting datasets
that should no longer be in use. So far, ATLAS users and users of other research
collaborations move datasets with rigid policies or by hand on a dataset basis.
The implementation of this feature into a service could replace the manual way
by an at least semi-automatic mechanism of rebalancing data. Future research
will focus on:

– The algorithm will be refined in terms of flexibility for use in various envi-
ronments with even more input parameters. One additional feature will be
enabling/disabling datasets, allowing the user to control whether a dataset
is able to move or not. This makes the algorithm more efficient and reliable.

– The algorithm is highly parallelizable. Hence, runtime improvements are
expected to be achieved in order to apply it to more complex use cases. The
current code base represents a first version which proves the concept. It runs
on a single standard personal computer.

– Further constraints should be refined in the model. On the network side, I/O
bandwidth between data centers can be defined into the cost metric. Various
job classes can be considered, an issue that has not yet been covered in this
work.

References

1. Abdel-Ghaffar, K.A., El Abbadi, A.: Optimal allocation of two-dimensional data.
In: International Conference on Database Theory. pp. 409–418. Springer (1997)

2. Atallah, M.J., Prabhakar, S.: (almost) optimal parallel block access to range
queries. In: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems. pp. 205–215. ACM (2000)

3. Bell, D.A.: Difficult data placement problems. The Computer Journal 27(4), 315–
320 (1984)

4. Berchtold, S., Böhm, C., Braunmüller, B., Keim, D.A., Kriegel, H.P.: Fast paral-
lel similarity search in multimedia databases. In: Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data. pp. 1–12. SIGMOD
’97, ACM, New York, NY, USA (1997). https://doi.org/10.1145/253260.253263,
http://doi.acm.org/10.1145/253260.253263

5. Bonacorsi, D., Boccali, T., Giordano, D., Girone, M., Neri, M., Magini, N.,
Kuznetsov, V., Wildish, T.: Exploiting cms data popularity to model the evolu-
tion of data management for run-2 and beyond. In: Journal of Physics: Conference
Series. vol. 664, p. 032003. IOP Publishing (2015)

6. Campello, R.J.G.B., Hruschka, E.R.: On comparing two sequences of numbers
and its applications to clustering analysis. Information Sciences 179(8), 1025–1039
(2009)

7. Chang, R.S., Chang, H.P.: A dynamic data replication strategy using access-
weights in data grids. The Journal of Supercomputing 45(3), 277–295 (2008)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12


14

8. Chu, W.W.: Optimal file allocation in a multiple computer system. IEEE Trans-
actions on Computers 100(10), 885–889 (1969)

9. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. The International Journal of High Performance Computing
Applications 15(3), 200–222 (2001)

10. Guo, W., Wang, X.: A data placement strategy based on genetic algorithm in
cloud computing platform. In: Web Information System and Application Confer-
ence (WISA), 2013 10th. pp. 369–372. IEEE (2013)

11. Laning, L.J., Leonard, M.S.: File allocation in a distributed computer communi-
cation network. IEEE Transactions on Computers (3), 232–244 (1983)

12. Lassnig, M., Garonne, V., Branco, M., Molfetas, A.: Dynamic and adaptive data-
management in atlas. In: Journal of Physics: Conference Series. vol. 219, p. 062054.
IOP Publishing (2010)

13. Megino, F.B., Cinquilli, M., Giordano, D., Karavakis, E., Girone, M., Magini, N.,
Mancinelli, V., Spiga, D.: Implementing data placement strategies for the cms
experiment based on a popularity model. In: Journal of Physics: Conference Series.
vol. 396, p. 032047. IOP Publishing (2012)

14. Ram, S., Marsten, R.E.: A model for database allocation incorporating a concur-
rency control mechanism. IEEE Transactions on Knowledge and Data Engineering
3(3), 389–395 (1991)

15. Sato, H., Matsuoka, S., Endo, T.: File clustering based replication algorithm in
a grid environment. In: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. pp. 204–211. IEEE Computer
Society (2009)

16. Sato, H., Matsuoka, S., Endo, T., Maruyama, N.: Access-pattern and bandwidth
aware file replication algorithm in a grid environment. In: Proceedings of the 2008
9th IEEE/ACM international Conference on Grid Computing. pp. 250–257. IEEE
Computer Society (2008)

17. Spiga, D., Giordano, D., Barreiro Megino, F.H.: Optimizing the usage of multi-
petabyte storage resources for lhc experiments. In: Proceedings of the EGI Commu-
nity Forum 2012/EMI Second Technical Conference (EGICF12-EMITC2). 26-30
March, 2012. Munich, Germany. Published online at https://pos.sissa.it/162/107/
(2012)

18. Wang, J.Y., Jea, K.F.: A near-optimal database allocation for reducing the average
waiting time in the grid computing environment. Information Sciences 179(21),
3772–3790 (2009)

19. Yuan, D., Yang, Y., Liu, X., Chen, J.: A data placement strategy in scientific cloud
workflows. Future Generation Computer Systems 26(8), 1200–1214 (2010)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_12

https://dx.doi.org/10.1007/978-3-319-93698-7_12

