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Abstract. Detection and classification of rotorcraft targets are of great signifi-

cance not only in civil fields but also in defense. However, up to now, it is still 
difficult for the traditional radar signal processing methods to detect and distin-

guish rotorcraft targets from various types of moving objects. Moreover, it is even 

more challenging to classify different types of helicopters. As the development 

of high-precision radar, classification of moving targets by micro-Doppler fea-

tures has become a promising research topic in the modern signal processing 

field. In this paper, we propose to use the deep convolutional neural networks 

(DCNNs) in rotorcraft detection and helicopter classification based on Doppler 

radar signals. We apply DCNN directly to raw micro-Doppler spectrograms for 

rotorcraft detection and classification. The proposed DCNNs can learn the fea-

tures automatically from the micro-Doppler signals without introducing any do-

main background knowledge. Simulated data are used in the experiments. The 

experimental results show that the proposed DCNNs achieve superior accuracy 

in rotorcraft detection and superior accuracy in helicopter classification, outper-

forming the traditional radar signal processing methods.  

Keywords: Convolutional neural network, deep learning, target detection, clas-

sification, micro-Doppler. 

1 Introduction 

As the carrier of air transport and reconnaissance, rotorcraft plays a significant role in 

military and civil fields. However, it is difficult to distinguish a rotorcraft from ground 

targets by the conventional pulsed-Doppler radar when the rotorcraft is flying or hov-

ering with a low speed at a low altitude. For example, the traditional radar signal pro-

cessing algorithm can neither distinguish a helicopter from the armored vehicles in bat-

tlefields, nor distinguish the unmanned aerial vehicles from the pedestrians in urban 

environments, etc. Moreover, it is even more challenging to classify different types of 

rotorcrafts. Thus, an automatic rotorcraft detection technique is in real demand [1, 2]. 
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The concepts of Micro-motion and Micro-Doppler were introduced by Chen et al. [3]. 

In many cases, an object or any structural component of an object may have oscillatory 

motion, called micro motion [4]. The source of micro motion may be a rotating propel-

ler of a fixed-wing aircraft, the rotating rotor blades of a helicopter, a rotating antenna, 

the flapping wings of birds, or a walking person with swinging arms and legs, etc. The 

Doppler shift caused by micro motion is called micro-Doppler. Target recognition 

based on micro-Doppler features can extract motion signatures of target from the radar 

returns, which opens up a probe to new ways of target recognition. 

Rotorcraft blade is usually made of metal or composite material, which produces a 

strong radar reflex. As the speed of the rotor tip is faster than that of the fuselage or the 

fretting of other ground targets, rotor rotation caused by Doppler shift occupy a unique 

position. Micro-Doppler is therefore very suitable for rotorcraft target recognition and 

classification. However, most of the existing recognition or classification algorithms 

devise discriminative features on the post-processed signals rather on the raw micro-

Doppler signals. Such dependence on the domain knowledge of micro-Doppler signals 

limits the scalability of those algorithms.  

Deep learning algorithms have revolutionized several applications such as image clas-

sification, speech recognition, etc. in recent years. Comparing with the previous state-

of-the-art algorithms that principally rely on domain knowledge-based features, the 

classification accuracy of deep learning-based algorithms has been improved signifi-

cantly. Therefore, in this paper, we consider an alternative deep learning approach to 

overcome such limitations. To the best of our knowledge, deep learning approach has 

not been widely used in the radar community, particularly for rotorcraft recognition 

with Doppler signatures. 

In this paper, we propose to use deep convolutional neural networks (DCNNs) to rec-

ognize micro-Doppler signatures in spectrograms and then classify and recognize the 

rotorcraft targets. By training the convolutional neural network on micro-Doppler spec-

trograms, the model can learn the inner features automatically so that it can recognize 

the rotorcraft targets and distinguish various rotorcrafts. In the experiments, we train 

the proposed DCNN on simulated micro-Doppler spectrograms and then apply the 

model to rotorcraft detection and helicopter classification. High recognition rate is ob-

served in the experiments.  

The remainder of this paper is organized as follows. Section 2 introduces the related 

work. Section 3 presents our rotorcraft recognition method in detail. Section 4 presents 

the rotorcrafts classification. Finally, we conclude our work in Section 5. 
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2 Related Work 

In recent year, most of the existing research in micro-Doppler target recognition follows 

the following prototype: firstly, explicitly extract some unique features from micro-

Doppler signals that are able to distinguish different targets; then, apply such features 

in target classification [5]. Molchanov et al extracts different types of targets from mi-

cro-Doppler signals and then classifies the ground moving targets [6,7]. Molchanov et 

al also classifies helicopters and fixed-wing aircraft based on their difference in Dop-

pler energy distribution [8]. Thayaparan et al decomposes micro-Doppler signals by 

wavelet decomposition and then extracts the micro-Doppler features by time-frequency 

analysis. Cai et al extracts the micro-Doppler signals by Hilbert-Huang transformation 

[10]. Since such approaches explicitly extract features, the algorithms rely on prior 

knowledge and expert empirical experience seriously.  

In recent years, with the development of high-performance processors, such as Graphic 

Processing Unit (GPUs) and FPGAs, CNN has achieved excellent empirical perfor-

mance in a number of applications, such as speech recognition, image recognition, and 

natural language processing [11, 12]. CNN employ a deep neural network structure 

which stacks multiple layers of simple neural network, through a supervised back prop-

agation algorithm.CNN extracts hierarchical abstractions from the training data. Com-

paring with the traditional image recognition algorithm, CNN is not necessary to extract 

empirical features. In the ImageNet LSVRC-2010 competition, 17% in top-5 error rate 

was obtained when classifying 1.2 million HD images of 1000 different classes [13], 

meanwhile the top-5 error rate using the traditional algorithm was up to 25.7% [14]. In 

2014, a face recognition method based on CNN are presented and achieved an accuracy 

of 99.15% [15][16] 

3 Rotorcraft Recognition through Micro-Doppler Signatures 

using CNN 

The main purpose of rotorcraft recognition is to find the signals from rotorcraft targets 

in various echo signals received by radar. In addition to find the rotating rotor, we sim-

ulate the radar echo of oscillating pendulums, spinning tops, walking people and flying 

birds at the same time. The emulated radar echo are processed with the short-time Fou-

rier transform so we can obtain the micro-Doppler spectrograms. During the observa-

tion window, 100 radar micro-Doppler spectrograms are simulated for each class of the 

targets. The corresponding sample spectrograms are shown in Figure 1. 
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(a) (b) 

(c) (d) 

(e) 

 

Fig. 1.  Sample Micro-Doppler spectrograms. (a) Rotor blades. (b) Oscillating pendulums. (c) 

Spinning and precession top. (d) Walking humans. (e) Wing-flapping birds. 

(a) Emulation of the radar backscattering from the rotating rotor blades is shown as 

follows：the radar is located at (X=10m,Y=0m,Z=20m) with a wavelength of 0.06m at 

the C-band, the rotor center is located at (X=0m,Y=0m,Z=0m) , the length of the blade 

is L = 6m, the width of the blade is W = 1m, and the rotation rate is Ω  from 2rev/s to 
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6rev/s following the normal distribution, the observation window is 1sec and the num-

ber of blades is N=3.  

(b) When emulating the radar backscattering from an oscillating pendulum, given the 

location of the radar at (X=10m, Y=0m, Z=20m), the pivot point of the pendulum is 

assumed at (X=0m, Y=0m, Z=2m). The string length L falls in 0.3m to 2m and the mass 

of the small bob is from 10g to 80g. In cases of damping and driving, let the damping 

constant be γ = 0.07 and the driving amplitude be A= 15, and the normalized driving 

frequency be f = 0.2. The radar wavelength is 0.03m at the X-band, the observation 

time is T = 10 sec. 

 (c) Emulation of the radar backscattering from a precession top. During the radar ob-

servation time interval, the simulated spinning and precession top is m = 25 kg, located 

at (X=0m, Y=0m, Z=2m). The distance between the center of mass and the fixed tip 

point is L = 0.563m, the moments of inertia𝐼1 = 𝐼2 = 0.117𝑘𝑔 ∙ 𝑚2, 𝐼3 = 8.5𝑘𝑔 ∙ 𝑚2, 

and the initial nutation angle 𝜃0 = 20°. The radar wavelength is 0.03m at the X-band 

radar located at (X=10m, Y=0m, Z=20m). The observation time is T = 8 sec. 

 (d) Emulation of the radar backscattering from walking humans using the human walk-

ing model in [17]. Assume that the relative velocity of the walking person range from 

0.2𝑚/𝑠 to 3𝑚/𝑠 following the normal distribution, the height of the person be 𝐻 =
 1.8m, where the radar is located at (X=10m,Y=0m,Z=20m)  with a wavelength of 

0.02m. The starting point of the human base is located at(X=0m,Y=0m,Z=0m), and the 

observation window is 4sec. 

(e) Emulation of the radar backscattering from the flapping wings of birds. The mean 

of the flapping frequency is set at 0.1Hz with variance 0.1, the mean of the arm length 

is 0.5cm with variance 0.1, and the birds is flying with a velocity from 0.7 m/s to 1.3m/s, 

where all the parameters above follow the normal distribution. Meanwhile, the X-band 

radar is located at (X=20m, Y=0m, Z=-10m) and the observation window is 10sec. 

We simulated 100 spectrograms for each target, and get 500 spectrograms in total. In 

this paper, we employ spectrogram itself as the input to the CNN. In other words, we 

regard the spectrogram classification problem as an image recognition problem. The 

observation window is set long enough to capture the periodic micro-Doppler signa-

tures. The size of the input spectrogram is normalized to 218×127 pixels. Among the 

500 data, 80% are used as the training dataset, and the rest are used as the testing da-

taset.  

As the number of the training samples is relatively small, we designed a small-scaled 

CNN for the purpose of rotorcraft recognition. The proposed CNN consists of six lay-

ers, three convolution layers followed by three fully-connected layers. As show in Fig 

2, the first convolution layer filters the 218×127 input image with 128 kernels of size 

5×5 with a stride of 3 pixels (this is the distance between the receptive field centers of 

neighboring neurons in a kernel map). The second convolutional layer takes as input 
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the (response-normalized and pooled) output of the first convolutional layer and filters 

it with 256 kernels of size 3×3 and 3 pixels per stride. The last convolutional layer had 

256 convolution filters of size 3×3. For max pooling, we used 3 × 3 max pooling with 

3 pixels per stride for the first layer, 2×2 max pooling with 3 pixels per stride for the 

second layer and the 3×3 max pooling with 2 pixels per stride for the third layer. Fur-

thermore, three full-connected layers are directly connected to the output of the third 

pooling layer and the target classes and each layer had 256 neurons.  
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Fig. 2  CNN for rotorcraft recognition 

Figure 3 presents the how the accuracy improves as the training goes on. It is easy to 

observe that the accuracy of the model reached 99% after the 4th epoch. The training 

time of each epoch is less than 1sec., that is, the total training time of the deep neural 

network is less than 10 sec.  
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Fig. 3.  The accuracy and the loss of the DCNN model in each epoch. 

Fig. 4 visualizes the feature representations extracted by the DCNN model at different 

levels. It is evident that the feature maps at each layer are more abstract than those at 

its previous layer. The feature maps at the very first layer contain more edges and struc-

tures, while the feature maps at subsequent layers contain more implicit understandings 

of the spectrogram.  
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Fig. 4.  Visualization of part of the features extracted in different layers in the DCNN model. 

In order to test the robustness of the proposed DCNN model, we reduced the resolution 

of the spectrogram to 109×86 and 55×43, and conducted the same experiments on the 

two sets of data separately. The experimental results are presented in Table 1. It is evi-

dent that when the resolution is 109×87, the recognition accuracy of 99% can be 

achieved at the 2nd epoch, when the resolution reduced to 55×43, 99% accuracy can 

also be achieved but at the 10th epoch. It is indicating that our proposed DCNN model 

is robust because it is able to maintain a high recognition accuracy when the resolution 

of the input is reduced. 

Table 1.  The accuracy of the DCNN model on the testing datasets with different resolution. 

Number of Epoch Accuracy (109×86) Accuracy(55×43) 

1/10 0.58 0.32 

2/10 0.9 0.32 

3/10 0.99 0.46 

4/10 0.99 0.69 

5/10 1.00 0.70 

6/10 1.00 0.71 

7/10 1.00 0.72 
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8/10 1.00 0.72 

9/10 1.00 0.97 

10/10 1.00 0.99 

4 Rotorcraft Classification through Micro-Doppler Signatures 

using CNN 

The classification of the rotorcraft is to further classify the rotorcraft after the rotor is 

recognized. Table 2 lists a few features of different helicopters. These estimated feature 

parameters are important for classifying the type of an unknown helicopter. In this emu-

lation, radar is located at(X=500m,Y=0m,Z=20m)with a wavelength of 0.06m at the C-

band, observation window is 1s, range resolution is 0.5 m, number of pulses is 10240. 

The rotor center is located at (X=0m,Y=0m,Z=0m) ), other features are show in Table 

2. In each type of rotorcraft, variance of blade length and rotation rate is 0.1, and 

showed a normal distribution, for each helicopter, we simulated 500 spectrograms. 

Table 2.  Main Rotor Features of Typical Helicopters 

Typical Heli-

copter 

Number of 

Blades 
Diameter(m) 

Rotation 

Rate(r/s) 
Tip Velocity(m/s) 

A 2 14.63 4.9 227 

B 3 14.63 4.8 221 

C 3 16.36 4.3 221 

D 7 24.08 2.9 223 

E 5 8.05 8.2 207 

F 4 11.0 6.4 222 

G 4 15.6 4.4 217 

During the observation time of 0.2 second, 500 radar backscattering is simulated for 

each class of targets and their sample spectrograms are shown in Fig 5, the size of the 

extracted spectrogram was 218 × 172. 
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(a) (b) (c) 

(d) (e) (f) 
 

(g) 

 

Fig. 5.  Sample spectrograms of helicopter. (a) A-Helicopter. (b) B-Helicopter. (c) C-Helicop-

ter. (d) D-Helicopter. (e) E-Helicopter. (f) F-Helicopter. (g) G-Helicopter. 

Because the data and type we employed are significantly larger than those of the first 

experiment. In this study, the CNN had eight layers, the first five layers are convolution 

layers, and the other three layers are full connected layers. The first convolution layer 

filters the 218×127 input image with 128 kernels of size 7×7 with a stride of 3 pixels. 

The second had 256 kernels of size 3×3 and 2 pixels per stride. For max pooling, we 

used the 3 × 3 max pooling with 3 pixels per stride for the first layer, the 2×2 max 

pooling with 3 pixels per stride for the second layer. The third and fourth convolutional 

layer had 256 convolution filters of size of 3×3. The last convolutional layer is max 

pooling layer with 256 max pooling filters of 5×5 and 5 pixels per stride. Furthermore, 

we had three full-connected layers that directly connects the output of the last pooling 

and seven target classes and each layer had 256 neurons (see Fig 6). 
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Fig. 6 CNN for rotorcraft classification 

We used a fourfold cross validation to evaluate the classification performance in this 

study. The training and test sets in each fold contained 2800 and 500 samples respec-

tively. For learning, we used the mini-batch SGD with a learning rate of 0.001 and a 

batch size of 10 and dropout was applied for the final fully connected layer with a prob-

ability of 0.5. 
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Fig. 7.  Accuracy and loss of DCNN for each epoch in rotorcraft classification 

In this paper, we used the open-source toolkit Keras, which uses the NVIDIA GPU and 

CUDA library (e.g., cuDNN [18]) to speed up the computation. We used the NVIDIA 

GeForce GTX Titan X edition GPU (with a 12-GB memory) and Intel(R) Xeon(R) 

CPU(4 cores) with a 8-GB memory in our experiments. The resulting classification 

accuracy was 100%, as listed in Fig 7. 

Table 3.  Training Time of  DCNN 

Number of  spectrum Time 

3500 40s 

4000 2s 

2000 ＜1s 

In addition, we also tested the recognition speed of the trained convolutional neural 

network and the results is show in Table 3. The testing time for each fold with 4000 

spectrograms was about 2s on average, meet the real-time requirements. Table 4.show 

the accuracy from other machine learning algorithm, it can be seen that only DCNN 

achieve great accuracy in this term. 
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Table 4.  The classification accuracy for different classifiers 

 KNN SVM DCNN 

Accuracy 81.53% 82.46% 100% 

 

5 Conclusion 

In this paper, a deep learning-based moving target recognition method is proposed for 

rotorcraft recognition and classification. We propose to use DCNN models to recognize 

rotorcrafts from the ground moving targets on raw micro-Doppler spectrums. Compar-

ing with the traditional radar signal processing techniques, DCNN-based models auto-

matically extract features from the micro-Doppler spectrograms rather than introducing 

any explicit domain knowledge. Simulated data are used in the experiments. The pro-

posed DCNN model successfully detected the rotorcraft from five types of moving ob-

jects with 100% accuracy. Similarly, he proposed DCNN classified seven types of hel-

icopters with 100% accuracy. In addition to the superior accuracy, the performance is 

very high, 2s for 4000 spectrums on average, which satisfied the requirement of real 

time prediction in real applications. In the future, we will focus on optimizing the pro-

posed models on real radar micro-Doppler data. 
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