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Abstract. Portfolio Selection (PS) is recognized as one of the most im-
portant and challenging problems in financial engineering. The aim of PS
is to distribute a given amount of investment fund across a set of assets
in such a way that the return is maximised and the risk is minimised.
To solve PS more effectively and more efficiently, this paper introduces
a Multi-population Genetic Algorithm (MPGA) methodology. The pro-
posed MPGA decomposes a large population into multiple populations
to explore and exploit the search space simultaneously. These popula-
tions evolve independently during the evolutionary learning process. Yet
different populations periodically exchange their individuals so promis-
ing genetic materials could be shared between different populations. The
proposed MPGA method was evaluated on the standard PS benchmark
instances. The experimental results show that MPGA can find better
investment strategies in comparison with state-of-the-art portfolio selec-
tion methods. In addition, the search process of MPGA is more efficient
than these existing methods requiring significantly less amount of com-
putation.

Keywords: Optimisation · Portfolio Selection Problems · Genetic Al-
gorithms · Multi-population GA.

1 Introduction

Investment is one of the most essential activities in the finance industry, and a key
mean of stimulating economic growth. A good investment strategy is obviously
to achieve maximum return back to the investors while the risk of investment loss
should be minimal [1], [2], [3]. In reality high investment profit often associates
with high risk. Therefore, professional investors and brokers often maintain a
portfolio of investment consisting of a collection of relative small assets instead
of a single or a small set of large assets. So the risk can be mitigated if one or
two investments went wrong. Setting the optimal portfolio is a key part of daily
tasks of portfolio managers. The challenge here is not only finding an optimal
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or near optimal portfolio investment, but also to find a good solution efficiently
so the professionals can react to events such as market changes quickly.

The above problem is known as the Portfolio Selection (PS) problem, which is
also a challenge for computer scientists and optimisation practitioners. PS is one
of the key roles of portfolio mangers whose goal is obviously needed to maximise
customer satisfaction. The selection process can be done manually by a manager.
However, that is only suitable when this manager is very experienced and the
choice is rather limited. In many circumstances formulating the best portfolio
strategy by hand is not feasible as the problem is combinatorial in nature, with
high computational complexity. For circumstances where the market changes fast
or the asset structure is complicated, the complexity of PS can go higher and
become difficult to solve even for computing methods. Establishing a fast and
effective portfolio selection algorithm remains as a challenge. The PS problem
has some notable extensions. The most studied is probably a variation with
the addition of cardinality and boundary constraints [3]. Cardinality constraint
means the total number of assets to be included in the solution portfolio can
not go beyond a certain threshold. Boundary constraint specifies the lower and
upper limits of investment that can go to each asset in the formed portfolio. The
task is known as cardinality constrained portfolio selection problem.

It is known that finding the optimal portfolio is an NP-hard problem. One
of the widely used methods in PS is the Markowitz mean-variance model, which
forms a single portfolio. This model captures the expected return and the risk
of the portfolio [1] [4]. This model is and still remains as the core of existing PS
methodology. However, the practicality of this model in real world scenarios has
been criticized because the assumptions of the model are not very realistic. For
example, it assumes the returns are in normal distributions. It also assumes that
correlations between assets are fixed and never change. Utilizing the Markowitz
mean-variance PS model, a PS task can be formulated as a quadratic program-
ming problem [3]. This is an exact method which can find the actual optimal
solution. However, that is only feasible when the number of variables in the
model is small. When the number of variables is large, exact methods become
impractical, if not impossible, to find the optimal solution within an acceptable
amount of time.

In contrast to exact methods, heuristic and meta-heuristic approaches search
for near-best solutions. It is well known that meta-heuristic algorithms can find
good quality solutions within a reasonable period of time [5]. This approach has
indeed been introduced to Portfolio Selection problems. That includes the use
of Genetic Algorithm [3]], Tabu Search [3], Simulated Annealing [3], Particle
Swarm Optimisation [6], Harmony Search [7] and hybrid algorithms [8] [9].

To further improve the PS solving mechanism, we thereby propose a new
approach based on Genetic Algorithm (GA). Also we address the extended ver-
sion of PS which has cardinality and boundary constraints embedded as these
constraints are more realistic but add many more difficulties in finding a good
solution. GA is a well-known population based meta-heuristic search method
which simulates the survival of the fittest principle for problem solving [5] [10]. In
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the past GA has demonstrated its effectiveness in solving optimisation problems
from a wide range of fields that include many difficult real-world applications.
However, classical GA does have certain drawbacks. For example the conver-
gence of the GA evolution process can be slow hence affecting the time required
for finding a satisfactory solution. In constrained optimisation problems in par-
ticular the PS problem in this study, slow convergence may jeopardise GA as the
chosen method due to the efficiency issue. One of the causes of this phenomenon
is the use of a single population in classical GA, as the exploitation in the search
space may not unfold well because the coverage in the search space of only one
population may not be sufficient even if the population size is big [11].

To address the aforementioned issues in classical GA, we propose a variation
of GA which allows multiple populations co-exist during one GA evolution pro-
cess. We denote that method as MPGA which is designed for the constrained PS.
By MPGA one or more populations will explore the search space of a problem,
whilst other populations can perform exploitation in the same space. With the
combination of both exploration and exploitation the convergence of a GA search
process is expected to be quicker. In addition, MPGA allows good individuals to
be passed across different populations. So good genetic materials can be shared
periodically to help different populations find better solutions more effectively.
The well known PS benchmark dataset [3] is used for performance evaluation
in this study. This benchmark has been widely used in the PS literature. On
this benchmark MPGA is compared against state of the art portfolio selection
algorithms that are widely used by PS researchers, developers and managers.

The rest of the paper is organised as such. Section 2 describes the portfolio
selection problem in detail. Section 3 discusses the main components of the
proposed method. Section 5 shows the experimental results with the comparison
with existing methods. The conclusion of this study is presented at Section 6.

2 Problem Descriptions

This paper focuses on the cardinality constrained portfolio selection problem
which has two constraints added, the cardinality constraint and boundary con-
straint. These constraints are to reduce the transaction cost and avoid investment
assets that are too small or too large. Cardinality constraint limits the number
of assets to be included in the formed portfolio. Boundary constraint set a lower
bound and upper bound for each asset of the formed portfolio. The formulation
of the PS model is proposed by [3] [12]:

min λ

 n∑
i=1

n∑
j=1

wiwjαij

 + (1− λ)

[
−

n∑
i=1

wiµi

]
(1)

Subject to

n∑
i=1

wi = 1 (2)
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n∑
i=1

si = K (3)

εisi ≤ wi ≤ δisi, i = 1, ..., n (4)

si ∈ {0, 1} , i = 1, ..., n (5)

where n is the total number of assets, wi is the proportion of the budget
invested in the i-th asset, αij is the covariance between i-th and j-th assets, λ
is the risk aversion, λ in [0, 1], µi is the expected return of the i-th asset, K
is the number of assets to be invested in assets in a portfolio, si is a decision
variable represents whether the i-th asset has been selected or not, and εi and
δi respectively are the upper and lower bounds. The cardinality constrained PS
model involves two sub-problems: (1) the selection problem that seeks to select
a subset of assets and (2) the allocating problem which aims at determining the
proportion for each of the selected asset. In the literature, PS formulations are
treated as a mixed integer programming [3].

3 Methodology

The classical GA has shown slow convergence and difficulties in handling con-
strained optimisation problems [11]. While Memetic Algorithms (MAs), which
combine GA with local search algorithms, have been proposed to improve the
convergence process of GA [11] [13],[14],[15],[16]. A local search algorithm is
called at every generation to further improve the generated solutions and ex-
ploitation process [17]. Nevertheless, calling the local search algorithm at every
generation would be time consuming and may lead to premature convergence.
Our proposed multi-population GA (MPGA) is a remedy of this issue of memetic
algorithms while still addressing the slow convergence problem [18].

Figure 1 shows the flowchart of the proposed MPGA. It starts from generat-
ing a population of random solutions. Then MPGA decomposes the whole pop-
ulation into multiple subpopulations from Subpopulation 1 to Subpopulation n.
The subpopulations are scattered over the search space. This is to encourage
exploration. While the search of each sub population acts like exploitation in
nearby space similar to that in local search. These subpopulations evolve inde-
pendently during the search process. From Figure 1 we can see that the process
of each subpopulation is identical, all following selection, which is to pick good
solutions to produce the next generation; crossover and mutation, which are to
produce offspring solutions based on the picked solutions. When better solutions
are found, the subpopulation will be updated as shown in the figure.

However at each generation, if the update criterion is met but the stopping
criterion is not met, these subpopulations will be combined into a large popula-
tion for the next generation, which will start from splitting the large population
into multiple subpopulations again. So the exploration and exploitation will start
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Fig. 1. Visual Representations of the Proposed Multi-population Genetic Algorithm
(MPGA)

over again. The update criterion is that the best solution has not been improved
for a certain steps. The stopping criterion is that the maximum number of gener-
ation has been reached. We can see from the algorithm that the search progress
may progress further if it is trapped in a local optima because it can be detected
and dealt with by the combining and dividing of populations.

Asset Index 1 2 3 4 5 6 . . . n

Selection 1 1 0 0 0 1 . . . 1

Boundary Value 0.1 0.5 0 0 0 0.2 . . . 0.1

Fig. 2. An Example of Solution Representation

In terms of problem representation, each individual of GA is a solution for
PS. A solution is represented by a two-dimensional array where the array size
is equal to the total number of assets n, as shown in Figure 2. The first row
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represents the selection. The value of each cell is either 0 or 1, while 1 indicates
the corresponding asset is selected and 0 is not. The second row represents the
boundary value of the chosen asset which takes a real value within the given
lower and upper boundary constraint.

Each cell of the first row is randomly assigned either 0 or 1 while makes sure
that the total number of 1s satisfies the cardinality constraint, the max number
of assets in the portfolio. Next, for each column with a 1 at the first row, the
corresponding cell in the second row will be assigned with a real value. That
value has to be in between the predefined upper and lower bounds to satisfy the
constraint. In addition, the sum of these values in the second row has to be 1
indicating 100% allocation of the investment fund.

Once solutions in the initial populations are generated, they will be assigned
with fitness values before the standard GA selection process. The calculation of
the fitness value is based on Equation (1) described above. The decomposition
into n subpopulations is done in a random manner. That is, each subpopulation
contains a set of solutions randomly selected from the whole populations. No
duplicates will occur in the selections so there is no overlaps between these sub-
populations.

All subpopulations use roulette wheel as the selection mechanism. They all
use one point crossover operator, one point mutation operator and steady state
updating rule. The crossover operator, which exchanges parts between two se-
lected solutions, runs with a low probability and only generates one offspring by
picking the best one generated by the parents. This is to increase the efficiency of
the search. The mutation operator, which randomly modifies the selected solu-
tion, can be viewed as a local search algorithm in MPGA. Mutation has relatively
high probability in order to give better chances to perturb cell values to exploit
surround areas in the search space. Only those changes that lead to an improve-
ment in the fitness values are accepted in the offspring. If the best solution in
all subpopulations cannot be improved for a consecutive number of generations,
all subpopulations are merged into one population to combine their genetic ma-
terials for the next round of decomposition. By this approach, solutions will
be regrouped for the new episode of search. The regrouping will stimulate the
search in new areas while still maintain the best solution obtained so far. Hence
it has a better chance to overcome local optima. As mentioned early and shown
in Figure 1, the entire process repeats until the maximum number of generations
is reached.

4 Experiment Settings

This section first discusses the characteristics of instances from the PS bench-
mark which is used to evaluate the performance of the proposed MPGA. Then
the MPGA parameter settings is presented in detail.
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4.1 Benchmark instances

The PS benchmark instances from the OR–library are used to evaluate the
effectiveness of the proposed MPGA. This benchmark is commonly used in the
literature of Portfolio Selection studies [19]. It comprises five different sets each
representing the weekly share prices at the stock market of a country [19]. The
main characteristics of these five instances are listed in Table 1. In this table,
n represents total number of the assets, k represents the maximum number of
assets in a formed portfolio (cardinality constraint), εi (i=1,...,n) is the lower
bound of the asset and δi (i=1,...,n) is the upper bound of the asset.

Table 1. Portfolio Selection Benchmark Datasets

# Data Set Country n k ε δ

1 Hang Seng Hong Kong 31 10 0.01 1

2 DAX 100 Germany 85 10 0.01 1

3 FTSM 100 UK 89 10 0.01 1

4 S&P 100 USA 98 10 0.01 1

5 Nikkei Japan 255 10 0.01 1

4.2 Parameter settings

The proposed MPGA involves six parameters that need to be set in advance. To
calibrate MPGA parameters, we randomly selected two data sets for parameter
tuning purpose. The selected sets are: DAX 100 and Nikkei. Next, we conducted
a preliminary experiment to set the parameters value of MPGA. For each pa-
rameter, we have tested a range of values within the predefined range and the
value that leads to good results are used. Also the trade-off between the solution
quality and the computational time is considered. Based on this empirical study,
parameters are settled with the suggested values which are shown in Table 2.
The λ value of Equation (1) was tested using 51 different values and each value
is tested for 1000× n times of evaluations. That is the same as the experiments
in [3] and [6].

5 Results and Comparisons

To evaluate the effectiveness of the proposed MPGA, two sets of experiments
were conducted. In the first set of experiments, we evaluated the benefit of
using multi-population by comparing the results of GA with multi-population
(MPGA) and the results of classical single population GA. In addition, we also
investigated the impact of the number of subpopulations in MPGA. In the second
set of experiments, MPGA was compared with the existing state of the art
methods. To make a fair and consistent comparison, our MPGA used the same
PS benchmark and applied the same stopping condition as reported in these
studies, the maximum number of evaluations.
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Table 2. MPGA Parameter Setting

Parameters Tested Range
Suggested Values

Exploration Exploitation

Crossover rate 0.01-0.99 0.8 0.2

Mutation rate 0.01-0.99 0.3 0.85

Population size 10-500 300

Number of sub-populations N 2-10 6

Number of consecutive non-
improvement generations

5-100 Every 50 fitness evaluations

Maximum number of generations
MaxG

1000× n

5.1 Effectiveness evaluation

To ensure a fair comparison, both MPGA and GA have been tested on same
population of solutions, stopping condition and computer resources. All the ex-
periments of both MPGA and GA are conducted for 51 independent runs with
different random seeds. All five datasets from the benchmark were used in this
comparison.

The results from both MPGA and GA are statistically compared using the
Wilcoxon test with a confidence level of 0.05. MPGA consistently outperformed
classical GA. The actual results are shown in Table 3 which combines a few
other comparison results. Here we only show the p-value of MPGA against GA
in Table 3. In this table, a p-value <0.05 means that the MPGA is statistically
better than GA (shown in bold). A p-value >0.05 means that the difference
between these two algorithms are not significant.

Table 3. The p-value of comparing MPGA with GA

Data Set p-value

1 Hang Seng 0.059

2 DAX 100 0.023

3 FTSM 100 0.016

4 S&P 100 0.037

5 Nikkei 0.011

The p-values tabulated in Table 3 show that MPGA is statistically better
than GA on four out of five data sets. From this experiment, we observe that
the multi-population approach has a positive impact on the performance GA.

Now we show the studies on the impact of n, the number of subpopulations,
to see how this influences the performance of MPGA in term of solution quality
as well as the computational cost. MPGA was evaluated on two data sets, DAX
100 and Nikkei. The n value tested from n = 2 to n = 10 are presented in Table
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Table 4. The impact of n: the number of subpopulations, on solution quality and
computational cost

n = 2 n = 4 n = 6 n = 8 n = 10

λ (DAX 100) 2.8324 2.7461 2.3116 2.3027 2.2875
s (DAX 100) 16.21 17.11 18.21 26.33 28.14

λ(Nikkei) 0.7643 0.7275 0.6328 0.6279 0.6248
s(Nikkei) 56.18 67.26 73.14 105.16 115.71
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Fig. 3. Runtime and solution quality under different n for Nikkei

4. For each dataset, the solution quality λ and runtime in seconds s are recorded
in two rows of the table. It can be seen that with the increased n value, the
quality improves as the goal of PS is to minimise the λ value. As expected the
computational cost climbs quite quickly with the size n as well.

The relationships between solution quality and run time are also shown in
Figures 4 and 3 which are for Nikkei and DAX 100 dataset respectively. From
the obtained results, we can see that the best trade-off is when n = 6. Although
n = 8 and n = 10 are slightly better, their computational cost are higher that
than n = 6 and they do not add much extra value to the solution.

5.2 Comparisons with state of the art methods

In this section, the proposed MPGA is compared with the state of the art meth-
ods. The methods included in the comparison are the following four:

– Tabu search algorithm (TS) [3]

– Simulated annealing (SA) [3]
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Fig. 4. Runtime and solution quality under different n for DAX 100

– Genetic algorithm (GA) [3]

– Particle swarm optimisation (PSO) [6]

The comparison includes the solutions found by MPGA against those from
TS, SA, GA and PSO. The minimum mean percentage error over 51 independent
runs was used. Table 5 shows the results from MPGA and the results from the
aforementioned four existing PS methods. These results of the compared meth-
ods are taken form the corresponding publication. In the table, the best results
are shown in bold. Table 5 shows that, on all five tested data sets, the proposed
MPGA obtained better results compared to the state of the art methods. When
considering the overall average result, which is shown in the last row of Table 5,
MPGA is also achieved better solution than other algorithms.

Table 5. MPGA Comparing with Existing State-of-the-art Methods

# Data Set MPGA GA SA TS PSO

1 Hang Seng 1.0952 1.0974 1.0957 1.1217 1.0953

2 DAX 100 2.3116 2.5424 2.9297 3.3049 2.5417

3 FTSM 100 1.0543 1.1076 1.4623 1.6080 1.0628

4 S&P 100 1.6482 1.9328 3.0696 3.3092 1.6890

5 Nikkei 0.6328 0.7961 0.6732 0.8975 0.6870

Average overall 1.34842 1.49526 1.8461 2.04826 1.41516
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Table 6. Computation Cost of MPGA and Existing State-of-the-art Methods (in sec-
onds)

# Data Set MPGA GA SA TS PSO

1 Hang Seng 1.3 172 79 74 4.8

2 DAX 100 18.21 544 210 199 26.8

3 FTSM 100 28.34 573 215 246 31.4

4 S&P 100 30.44 638 242 225 36.6

5 Nikkei 73.14 1964 553 545 75.8

To compare above methods in term of efficiency, we measured the computa-
tional runtime of these methods on the five datasets. Table 6 presents the time
of MPGA, GA, SA, TS and PSO in seconds. In the table, the best computa-
tional time are also highlighted in bold. As can be seen, the computational time
of MPGA is considerably lower than that of compared methods on all tested
instances. Note that MPGA and all the methods in this comparison use the
number of fitness evaluation as the main stopping condition. That is fixed and
identical for all runs regardless of the method. Hence the advantage of MPGA
is valid.

6 Conclusion

In this work, a multi-population genetic algorithm is presented for solving the
cardinality constrained portfolio selection problem. The proposed MPGA can
improve the convergence of the search process. The combining and splitting of
subpopulations has the effect of hybridising exploration and exploitation in the
search space. The sharing of genetic materials during the evolution process en-
courages the search to step out local optima more effectively. The performance
of the proposed MPGA was evaluated on the benchmark datasets of cardinality
constrained portfolio selection problem. The experiments showed the effective-
ness of MPGA by comparing it with GA as well as the current state-of-the-art
methods. In addition, the computational cost of MPGA is much lower than that
of these state-of-the-art methods. Thus, we conclude that MPGA, multiple pop-
ulation of GA, is an effective and efficient method for the cardinality constrained
portfolio selection problems.

This study of PS is still at its early stage. A few extensions will be investi-
gated in the near future, for example improving the sharing and collaboration
between multi-populations and introducing MPGA into other similar domains.
In addition we will study the impact of the solution distribution of multiple
population.
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