
Comprehensive Learning Gene Expression
Programming for Automatic Implicit Equation

Discovery

Yongliang Chen1, Jinghui Zhong1 (Corresponding author), and Mingkui Tan2

1 School of Computer Science and Engineering,
South China University of Technology, Guangzhou, China

jinghuizhong@gmail.com
2 School of Software Engineering,

South China University of Technology, Guangzhou, China

Abstract. Implicit equation is loose in form, which makes it more pow-
erful than explicit equation for data regression. The mainstream method
for automatic implicit equation discovery is based on calculating deriva-
tives. However, this derivative-based mechanism requires high time con-
sumption and it is difficult to solve problems with sparse data. To solve
these deficiencies, this paper proposes a new mechanism named Compre-
hensive Learning Fitness Evaluation Mechanism (CL-FEM). The mecha-
nism learns knowledge from disturbed information collected from several
previously generated stochastic datasets, to check the validity of the
equation model. Only the valid equations can be candidates of selection,
which is a process to pick out the equation with the smallest output.
We integrate the proposed mechanism with the simplified Self-Learning
Gene Expression Programming (SL-GEP) and propose the Comprehen-
sive Learning Gene Expression Programming (CL-GEP). The experi-
ment results have demonstrated that CL-GEP can offer very promising
performance.

Keywords: Implicit equation, symbolic regression, gene expression pro-
gramming (GEP), disturbed knowledge learning.

1 Introduction

Genetic programming (GP) is a powerful evolutionary computing technique that
has been used to solve complicated optimization problems[3, 5]. Due to its high
efficacy, GP has aroused people’s attention these years, and many enhanced vari-
ants of GP [7, 6, 1] have been developed, such as Gene Expression Programming
(GEP)[2, 12] and Self-Learning Gene Expression Programming (SL-GEP) [14].
Thus far, GEP has been applied to a number of science and engineering fields
[4, 8, 13, 11].

One of the most common applications of GP is symbolic regression, which re-
quires finding proper mathematic equations to fit the given observed data. Sym-
bolic regression problem has profound influence on our life, for finding proper

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

2 Lecture Notes in Computer Science: CL-GEP

equations to express data can help people predict future incidents or even exca-
vate unknown laws of nature. The existing GPs, however, are mostly focused on
finding explicit equation. An explicit equation in an D-dimension space can be
described as y = f(xD−1), where xD−1 is a (D− 1)-dimension variable vector,
the dependent variable y is separated and is expressed by an explicit formula.
As y is separated and the form is fixed, it somehow sacrifices the expression
capability of y, therefore, implicit equation is proposed. The form of an implicit
equation in an D-dimension space can be f(xD−1, y) = 0, putting y in the
function f(...) can make the equation more expressive.

To find an approximate implicit model seems very direct and concise, how-
ever, there exists many perennial and fundamental problems. The most attrac-
tive problem is how to guarantee the feasibility of a model. The aim of symbolic
regression problems for implicit equation is to find out a mathematical rule
f(...) consisting of x1, x2, ..., xD, which can fit the target dataset best to make
f(x1, x2, ..., xD) = 0. Some direct methods which only focus on reducing f(...)
to zero will always converge very fast to some meaningless functions, like x− x
and sin2(x) + cos2(x)− 1, which are equivalent to zero. Therefore, how to avoid
models converging to these misleading equations is the key to handle implicit
symbolic regression problems.

The mainstream method to avoid finding infeasible models is to minimize
the differences of gradients between the model and the dataset [9]. The core
idea is assigning fitness value by calculating the differences between the partial
derivatives of each dimension of the target point and the derivatives calculated
using the neighboring point of the target one. This technique has proved to be
useful because it considers the shape of the model rather than only concentrating
on the output of the function.

We have practiced solving implicit equation tasks with this method, however,
we found some weakness of the derivative-based fitness evaluation mechanism
(DB-FEM). On the one hand, a large training dataset is needed. Once the data
points are not continuous enough, partial derivatives will be lacking in reliability
and accuracy. On the other hand, calculating derivatives is time-consuming and
inconvenient. When the set is large (contrast to the previous point) and the
model is in high dimension space, using this method seems impractical.

To solve these problems, we propose a new mechanism to evaluate symbolic
regression problems for implicit equations, named Comprehensive Learning Fit-
ness Evaluation Mechanism (CL-FEM). Traditional GPs only learn from positive
training data (i.e., those need to fit), using these data to guide the search pro-
cess. While in our method, we learn from not only positive training data, but
also negative training data, so we call it Comprehensive Learning. Rather than
calculating derivatives, we test the model function not only by using the target
dataset, but also by using several randomly generated, stochastic datasets pro-
duced in advance. Each dataset focuses on one dimension of the equation, and
the equation model makes sense only if every dimension makes contribution to
solving the problem. Otherwise, the model will be regarded as a failure.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

Lecture Notes in Computer Science: CL-GEP 3

To test this mechanism, we combine it with a simplified Self-Learning Gene
Expression Programming (SL-GEP), and propose a new algorithm for automatic
implicit equation discovery, named Comprehensive Learning Gene Expression
Programming (CL-GEP). We implement CL-GEP to some typical implicit func-
tion models to test the new mechanism. We not only pay attention to the success
rate of finding accurate functions, but also the time consumption. Also, we use
sparse datasets to test the proposed CL-FEM. To demonstrate the superiority,
we make comparisons with the DB-FEM. Results have shown that CL-FEM is
promising.

2 Preliminaries

To ensure that readers can have a better understanding of the paper, this section
will present some preliminary knowledge about the implicit equation, and the
derivative-based fitness evaluation mechanism (DB-FEM).

2.1 Implicit Equation Problem

An implicit equation is a function adopting xD as input and the output is
equivalent to zero, which is expressed as f(xD) = 0.

y = f (x) = x2 + 2x f (x , y)= x2 + y2 – 1 = 0

(a) Parabola (b) Circle

Fig. 1. Examples for explicit equation (parabola) and implicit equation (circle).

The need for implicit equation models arises when there is no independent
variable in a dataset, or at least we do not know which variable can be the
independent variable. To try to find an independent variable or make assumption
is impractical, therefore, implicit equation is the best choice. Transferring an
explicit equation to an implicit equation is very easy. For example, y = f(x) =
x2 + 2x (Fig. 1 a)can be translated into an implicit form g(x, y) = f(x) − y =
x2 + 2x− y = 0 very easily. On the contrary, if you want to transfer an implicit
equation, like x2 + y2 = 1 (Fig. 1 b), to an explicit equation, it is a piecewise
function y = ±

√
1− x2, which is very inconvenient. Therefore, implicit equations

are loose in form and are more powerful than explicit equations in expressing
data to some extent.

As the advantages of implicit equation are realized, several trials for implicit
equation discovery have been made previously. The main challenge is that there
are infinite implicit equations that are valid for any dataset, which proves finding

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

4 Lecture Notes in Computer Science: CL-GEP

f(xD) = 0 directly infeasible, as mentioned above. To make symbolic regression
more comprehensive, the need for effective implicit equation evaluation mecha-
nism is highly emergent.

2.2 Derivative-based Fitness Evaluation Mechanism

The mostly used method today to solve implicit equation regression problems
is using partial derivatives. Using this mechanism not only can ensure that the
target point fits the data, but also can predict the indirect relationships between
variables of the system.

For an implicit equation f(x, y) = 0, abandon the = 0 symbol, we can calcu-
late the partial derivatives δf/δx, δf/δy. Then, from derivative rules, we have

δy

δx
= −δf/δx

δf/δy
(1)

where δy
δx is the implicit derivative which can express the gradient of the implicit

equation. When it comes to three or more dimension equations, more derivative
values like δz

δx , δz
δy should be used to describe the information of the equations.

Then, we estimate the implicit derivatives 4y/ 4 x from the dataset, where
4x = xa − xa+1 and 4y = ya − ya+1, a is the index of the target point in the
dataset, the data need to be in order when calculating derivatives. To evaluate
an implicit equation model, differences between the model and the dataset are
expressed as

1

N

N∑
n=1

log(1 + |4y
4x
− δy

δx
|) (2)

where N is the size of the dataset. When the number of dimensions is more than
two, the estimation of f(x1, x2, ..., xD) becomes

1

N

N∑
n=1

log(1 + |4x2
4x1

− δx2
δx1
|+ |4x3
4x1

− δx3
δx1
|+ ...+ | 4xD

4xD−1
− δxD
δxD−1

|) (3)

From Eq. 3, we can easily find that the examination cost of DB-FEM in
computational time is O(ND2), where D is the number of dimensions. The
O(ND2) time consumption is high when the estimated mechanism should be
repeated thousands of times during GP. Besides, finding the nearest point of the
target point in the dataset is another time consuming task. What’s more, using
derivatives as criterion to evaluate a model requires the dataset to be large and
crowded enough, otherwise, derivatives may convey wrong information (see Fig.
2).

3 The Proposed Mechanism and Algorithm

This section will first describe the proposed CL-FEM, which is a new direction
to evaluate an implicit function model. Then the proposed CL-GEP will be
introduced.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

Lecture Notes in Computer Science: CL-GEP 5

Fig. 2. Example for a dataset with few data points. The red curve represents the target
equation, while the DB-FEM tends to find the equation represented by the blue curve,
for it is smoother and fits the derivatives better.

3.1 Comprehensive Learning Fitness Evaluation Mechanism

In contrast to the existing mechanism like calculating derivatives, the application
of CL-FEM is more direct and concise. As mentioned in previous sections, the
main difficulty of finding proper implicit equation model is how to avoid being
trapped in equations which are equivalent to zero. Instead of concentrating on
partial constitution, we focus on the output of f(xD), but selectively.

The CL-FEM regards a model meaningful under a premise that each dimen-
sion of xD contributes to solving the problem. To be more specific, the model is
illegal when some dimensions are missed, like f(x, y) = x3 + x, or some dimen-
sions are useless, like f(x, y) = y+ x2− y. We estimate outputs of the functions
by implementing data and computing the mean square error (MSE) of the results
with zero, which is defined as

MSE =
1

N

N∑
j=1

s2j (4)

Most of all, we need to ensure that a model is not misleading. To justify the
validity of a model, CL-FEM uses the disturbed data.

Step 1-Form stochastic datasets
For each dimension of the variable vector xD, we generate a stochastic

dataset. Data in the stochastic datasets are generated at the beginning of GP,
the dataset for the kth dimension is produced following the rule of

xij =

{
randval(Lk, Uk) j = k

tij otherwise
i = 1, 2, ..., N j = 1, 2, ..., D (5)

where N is the volume of the dataset, D is the dimension number for each point,
randval(a, b) returns a random value in the range of (a, b), Lk and Uk are the
upper bound and the lower bound of the kth dimension, and tij is variable from
the target dataset. Points are distributed randomly in one dimension, which can
be a tool for us to judge whether every dimension is meaningful.

Step 2-Estimate target models
We use the datasets generated in Step 1 to estimate whether every dimension

contributes to the target model.
First, calculate the results using the target dataset and all stochastic datasets,

forming a set consisting (D + 1) result vectors {S, S1, S2, ..., SD}. S is the
result vector gained from the target dataset, and the others are result vectors

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

6 Lecture Notes in Computer Science: CL-GEP

gained from the D stochastic datasets. Then, we estimate the model by calcu-
lating MSE between S and Sis

mi =
1

N

N∑
j=1

(sj − sij)2, sij ∈ Si, i = 1, 2, ..., D (6)

It is easy to justify that if the i-dimension makes sense in the model, there must
be mi > 0. We set 1E − 4 to be the tolerance degree, and set the fitness value V
of the obtained model by

V =

{
MSE (m1 > 1E − 4) ∧ (m2 > 1E − 4) ∧ ... ∧ (mD > 1E − 4) = TRUE

1E10 otherwise

(7)
where 1E10 is a huge constant which means the model is obsolete. Like the
direct methods, a smaller V is preferred during the evolution. When there is a
D-dimension equation model, the examination time consumption of CL-FEM is
O(ND), and the calculation processes are convenient and practical.

3.2 The Comprehensive Learning Gene Expression Programming
Algorithm

The CL-GEP adopts a simplified SL-GEP [14], using a novel representation in
chromosomes. What’s more, we make some fine-tunings for the convenience of
use.

1 2 ... H 1 ... H+12

Head Tail

Fig. 3. The chromosome representation of an individual.

Chromosome Representation The proposed CL-GEP removes the mecha-
nism of using subfunctions, for we want to get more concise and readable results,
however, it keeps the basic chromosome representation of SL-GEP. In CL-GEP,
each chromosome consists of a Head and a Tail. The Head and the Tail are stored
in a chromosome continuously. The Head can contain both functions (e.g., + or
-) and terminals (e.g., x, y, or 1), while the Tail can only store terminals. Sup-
pose that the length of the Head is H, then the length of the Tail should be
H + 1, to ensure that the chromosome can be decoded successfully even if the
Head only contains functions.

The form of the chromosome is presented in Fig. 3 and an example of de-
coding an implicit equation is presented in Fig. 4. Notice that, as the length of
a chromosome is fixed, some information in the chromosome may not be used,
however, as the length of the used chromosome is flexible, it can improve the
diversity of population to some extent.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

Lecture Notes in Computer Science: CL-GEP 7

+ x xx1 y y y

Head Tail

-

+ 1

**

x x y y

- * *

Not used

Decode

f (x , y) = x * x + y * y - 1

Fig. 4. Decode a chromosome to an implicit equation.

Function Set and Terminal Set We make some fine-tunings of the terminal
set and function set of SL-GEP to construct CL-GEP’s. The function set of
CL-GEP is much simpler

Ψ = {+,−, ∗} (8)

We abandon the function / in CL-GEP, for implicit equations are equivalent
to zero, which is only affected by numerator in a fraction. Therefore, adding /
to the function set is unnecessary, and it will make the output more difficult to
comprehend.

As for the terminal set, we add constant 1 to be a terminal, and the set can
be expressed as

Γ = {x1, x2, ..., xD, 1} (9)

Because we remove / from the function set, constant 1 or other constant can
not be decoded as x/x in CL-GEP. In order to improve the capability of precise
expression, we make 1 a terminal choice. It is proved to be necessary, for 1 is
always an important component of an implicit equation.

Mutation and Crossover Mutation and Crossover in CL-GEP are the same
as SL-GEP. The mutation process is a variant of the mutation in traditional
Differential Evolution (DE) [10], making three main improvements, Distance
measuring, Distance adding and Distance scaling, to ensure that it is feasible in
the unique chromosome representation. Crossover is performed after mutation
to make offsprings vary in diversity.

Selection In this step, good offsprings are selected to replace their parents to
become new individuals in the new population. The result of selection is based
on CL-FEM.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

8 Lecture Notes in Computer Science: CL-GEP

Start

Initialization, generation 0

Generate D stochastic dataset

Mutation and Crossover

Estimate all new individuals using CL-FEM

Update the population

generation generation+1

Meet end condition?

Y

N

End

Print the best implicit equation found

Fig. 5. The flowchart of the proposed CL-GEP algorithm.

The flowchart of the algorithm is shown in Fig. 5. We set limits to the number
of generations as the terminal condition. At last, the best-so-far implicit equation
model, which has the smallest fitness value V , will be regarded as the final
solution to the problem.

4 Experiments

This section investigates the performance of the proposed CL-GEP algorithm.
First, the experimental settings are presented. We also implement the DB-FEM
to the simplified SL-GEP and generate a testing algorithm named DB-GEP,
whose fitness value V is calculated by

V = MSE + diff (10)

where diff is calculated by Eq. 3.
The settings for the two algorithms are the same and they are competed

with each other. Then, we will present the experiment results and have some
discussions.

4.1 Experimental Settings
We experiment with four typical implicit equation problems with varying diffi-
culty (Fig. 6). The first two equations, Circle and Hyperbola, are the simplest

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

Lecture Notes in Computer Science: CL-GEP 9

(a) Circle

x2 + y2 - 1 = 0

(b) Hyperbola

x2 - y2 - 1 = 0

(c) Elliptic Curve

y2 – x3 + x – 1 = 0

(d) Sphere

x2 + y2 + z2 – 1 = 0

Fig. 6. Data sampled from the four target implicit equation systems.implicit equations, for the feature of the two curves are easy to capture and
the combining rule for x and y is concise. The third equation is Elliptic Curve,
which is more complex in form and harder to predict. For these three equations,
we take 500 sample points randomly from each system. The forth one is a 3-
dimension equation Sphere, which is the most difficult one in the four tasks. For
this equation, We sample 1000 points from the space.

The four equations are estimated by the two algorithms, CL-GEP and DB-
GEP. For each equation, we run 30 times, 20,000 generations in each time, then
calculate the success times during the 30 runs and the average time consumption
for one run. Programs are run on a computer with INTEL I7-6500U CPU. The
detailed parameter settings for the algorithms are listed in Table 1.

Table 1. Parameter settings.

Parameter V alue Summary
H 15 The length of Heads
F rand(0, 1) Scaling factor of mutation
CR rand(0, 1) Crossover rate

MAXGENS 20, 000 Maximum generations
POPSIZE 200 Size of the population

To test the algorithms’ practicability when faced with datasets of different
densities, experiments are implemented for sparse data on the first three equa-
tions, Circle, Hyperbola and Elliptic Curve. Each equation is run for 30 times,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

10 Lecture Notes in Computer Science: CL-GEP

20 data points 6 data pointsEquation

Circle

Hyperbola

Elliptic Curve

Fig. 7. Sparse datasets of Circle,Hyperbola and Elliptic Curve.

20,000 generations in each time. We calculate the success times when there are
respectively 500, 100, 20 and 6 data in the set, and make comparisons between
the two algorithms.

To show the sparse datasets more intuitively, we mark the points in the space
for sets containing 20 and 6 data points, which are shown in Fig. 7. It can be
observed that when the datasets contain 20 data points, we can still recognize
the general features of the curves. When it comes to datasets containing 6 data
points, however, it is almost impossible to tell out what they refer to. If the
algorithm is able to help find out the relationships between variables from these
sparse datasets, it will be of great significance.

4.2 Experimental Results and Discussion

We conduct experiments from two directions. The first one focuses on the ca-
pability of the algorithms to find the right equation models, where data are
crowded enough in the datasets. The second one aims to test how the two algo-
rithms perform when the datasets are sparse.

Experiments on the Four Equations Table 2 shows the results of the first
experiment, the success times and average time consumption to find a successful
equation are presented.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

Lecture Notes in Computer Science: CL-GEP 11

Table 2. Results on running four implicit equations.

Problem
CL-GEP DB-GEP

Suc Time(s) Suc Time(s)
Circle 30 231.57 30 371.13
Hyperbola 30 91.62 30 405.03
Elliptic Curve 29 148.78 20 467.59
Sphere 0 \ 0 \

The results have shown that the proposed CL-GEP algorithm has gained
promising performance against DB-GEP. It can be observed that both of the
algorithms can perfectly solve the first two problems, which are concise in forms.
When it comes to Elliptic Curve, however, the superiority of CL-GEP reveals
distinctly, with the DB-GEP only getting the success rate of 66.7%, while the
CL-GEP only fails in one run, holding the success rate of 96.7%.

Consider the DB-GEP, concentrating on the partial feature of the model
can guarantee the validity of the model to some extent, and it is certainly an
effective angle of solving symbolic regression problems, however, it may give little
attention to the original definition of an implicit equation, which is f(xD) = 0.
On the contrary, CL-GEP focuses only on the output of f(xD). It can adopt
the output as fitness value because it can ensure that all equations are valid and
meaningful. Previous works have doubts on the reliability and feasibility of the
output, experiments have proved that it works in CL-GEP.

As for another index of the experiment, CL-GEP has gained outstanding
performance in time consumption. The gap of time consumption between the
two algorithms is apparently huge. In equation Circle, the time cost by DB-
GEP is 150% of CL-GEP. What’s more, the differences of Elliptic Curve and
Hyperbola between the two algorithms are triple and quadruple. Regarding the
time consumption cost of the fitness evaluation mechanisms, DB-FEM mostly
spends time in calculating partial derivatives, the quotients of derivatives and
finding the nearest points, while CL-FEM spends time only when calculating
the output of D+1 datasets. The results prove effectively that the CL-FEM has
evident advantages.

Nevertheless, problems arise when solving the 3-dimension equation Sphere.
To our surprise, neither of the algorithms can find out the right equation. As
for DB-GEP, the DB-FEM performs weakly when handling complex and high-
dimension datasets. It is easy to be trapped in local optima, and the low con-
verging speed can be another factor that accounts for the results. We analyse
the outputs of CL-GEP, and the outputs are in high similarity. We take one of
them for an example

f(x, y, z) = (((z ∗x) ∗ (((z ∗ z)− y) ∗ (y ∗ (x+x)))) ∗ ((x ∗ (x ∗x)) ∗ (x ∗ y))) (11)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

12 Lecture Notes in Computer Science: CL-GEP

It can be observed from function (11) that the outputs of CL-GEP are in the
multiple multiplication. The sampled data for Sphere are ranged in [−1,+1],
which determines that the multiple multiplication function can finally produce
very small outputs. As all variables are contributing to the problem based on
CL-FEM, these wrong functions are regarded as favorable by mistakes.

Experiments on Sparse Datasets The results of the experiments on sparse
datasets are shown in Table 3, the numbers are success times in 30 runs. To
provide a more direct view, the variational curves are presented in Fig 8.

Table 3. Results of experiments on sparse datasets.

CL-GEP DB-GEP

Problem
data quantity data quantity

500 100 20 6 500 100 20 6
Circle 30 30 30 30 30 30 22 0
Hyperbola 30 30 30 30 30 30 29 0
Elliptic Curve 29 28 29 26 20 20 12 0

Fig. 8. The curves of the results on sparse datasets.

From the results, we can find that DB-GEP performs weakly in handling im-
plicit symbolic regression problems with sparse datasets. For datasets containing
500, 100 and 20 data, the relationships between different points are still able to
be recognized, therefore, it is still possible for it to find out the right solution.
When the quantity of data is reduced to 6, however, it fails in all the 90 runs.

From our perspective, the feature of sparse data accounts for the results. On
the one hand, if the sparse data are crowded in one specific region, they somehow

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

Lecture Notes in Computer Science: CL-GEP 13

will be related, however, they can not represent the whole equation model in the
space. On the other hand, if the sparse data are separated randomly in the
space, the neighboring points can not provide useful information to construct
the model, it may sometimes even bring out misleading information (Fig. 2).
These two factors seriously restrict the performance of DB-FEM, which makes
it incapable of solving sparse data problems.

Take a look at the results provided by CL-GEP, the performance is stable
and outstanding. For the two simple equations Circle and Hyperbola, the success
times are all 30 regardless of different datasets. When it comes to the Elliptic
Curve, the failure times when solving the 6-data set are only 4, the reducing
trend is weak.

Compared with the DB-FEM, CL-GEP wins the comparison because it only
concentrates on the target data. The information conveyed by a certain point
is only the position represented by coordinates, which is precise and authentic.
Information collected from the neighboring points may be disturbances when
solving sparse data problems, therefore, the CL-FEM has the superiority over
the DB-FEM.

5 Conclusions

In this paper, we have proposed a new evaluation mechanism for implicit equa-
tion model estimation, named CL-FEM. The proposed CL-FEM improves the
previously arisen direct methods of subtracting the function output to zero, by
embedding a new mechanism of learning knowledge from disturbed data. The
core idea of the mechanism is to compare the outputs calculated from stochastic
datasets with outputs from the target set. If there are no differences between the
two sets of outputs, then the equation will be regarded as invalid. This mecha-
nism can effectively avoid the evolution being trapped in misleading equations,
which is the main trouble of solving implicit symbolic regression problems.

We use a simplified SL-GEP to generate a new algorithm with CL-FEM
named CL-GEP. To demonstrate the superiority of CL-GEP, we make compar-
isons with the algorithm named DB-GEP, which embeds the mainstream fitness
evaluation mechanism DB-FEM. The proposed CL-GEP not only is more conve-
nient and practical, but also gets more promising results. When solving equations
with complex features, the CL-GEP can get a higher success rate. What’s more,
the O(ND) examination time consumption makes the proposed CL-FEM much
faster than the DB-FEM. Most significantly, the proposed algorithm can handle
problems with sparse datasets, which can not be tackled by the DB-FEM.

Nevertheless, there exists some weaknesses of the proposed CL-GEP, one of
which is the deficient capability of solving problems with datasets consisting of
small value data, which means avoiding being trapped in local optima caused
by multiple multiplication. There are also some other interesting research di-
rections. One direction is to enhance the capability of finding proper constant
by combining other evolutionary algorithms. Another direction is to reduce the
complexity of the output to make it more readable and comprehensible. We can

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

14 Lecture Notes in Computer Science: CL-GEP

consider incorporating the multiobjective optimization or other techniques to
make it more practical in applications.

6 Acknowledgment

This work was supported in part by the National Natural Science Foundation of
China (Grant No. 61602181), and by the Fundamental Research Funds for the
Central Universities (Grant No. 2017ZD053).

References

1. Brameier, M.F., Banzhaf, W.: Linear genetic programming. Springer Science &
Business Media (2007)

2. Ferreira, C.: Gene expression programming in problem solving. In: Soft computing
and industry, pp. 635–653. Springer (2002)

3. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press (1992)

4. Lee, Y.S., Tong, L.I.: Forecasting time series using a methodology based on autore-
gressive integrated moving average and genetic programming. Knowledge-Based
Systems 24(1), 66–72 (2011)

5. McPhee, N.F., Poli, R., Langdon, W.B.: Field guide to genetic programming (2008)
6. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: European Confer-

ence on Genetic Programming. pp. 121–132. Springer (2000)
7. ONeil, M., Ryan, C.: Grammatical evolution. In: Grammatical Evolution, pp. 33–

47. Springer (2003)
8. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Automatic design of a hyper-heuristic

framework with gene expression programming for combinatorial optimization prob-
lems. IEEE Transactions on Evolutionary Computation 19(3), 309–325 (2015)

9. Schmidt, M., Lipson, H.: Symbolic regression of implicit equations. In: Genetic
Programming Theory and Practice VII, pp. 73–85. Springer (2010)

10. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization 11(4), 341–359
(1997)

11. Zhong, J., Cai, W., Lees, M., Luo, L.: Automatic model construction for the be-
havior of human crowds. Applied Soft Computing 56, 368–378 (2017)

12. Zhong, J., Feng, L., Ong, Y.S.: Gene expression programming: a survey. IEEE
Computational Intelligence Magazine 12(3), 54–72 (2017)

13. Zhong, J., Luo, L., Cai, W., Lees, M.: Automatic rule identification for agent-based
crowd models through gene expression programming. In: Proceedings of the 2014
international conference on Autonomous agents and multi-agent systems. pp. 1125–
1132. International Foundation for Autonomous Agents and Multiagent Systems
(2014)

14. Zhong, J., Ong, Y.S., Cai, W.: Self-learning gene expression programming. IEEE
Transactions on Evolutionary Computation 20(1), 65–80 (2016)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_9

https://dx.doi.org/10.1007/978-3-319-93698-7_9

