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Abstract. In Mobile Ad-Hoc Networks, cooperative intrusion detection is effi-

cient and scalable to massively parallel attacks. However, due to concerns of 

privacy leakage and resource costs, if without enough incentives, most mobile 

nodes are often selfish and disinterested in helping others to detect an intrusion 

event, thus an efficient incentive mechanism is required. In this paper, we for-

mulate the incentive mechanism for cooperative intrusion detection as an evolu-

tionary game and achieve an optimal solution to help nodes decide whether to 

participate in detection or not. Our proposed mechanism can deal with the prob-

lems that cooperative nodes do not own complete knowledge about other nodes. 

We develop a game algorithm to maximize nodes’ utility. Simulations demon-

strate that our strategy can efficiently incentivize potential nodes to cooperate. 

Keywords: Mobile Ad-Hoc Networks, Cooperative intrusion detection, Priva-

cy, Evolutionary game 

1 Introduction 

The Mobile Ad-Hoc Networks (MANETs), equipped with wireless transceivers that 

can communicate with one another without the aid of any centralized infrastructure, 

are complex networks and widely used in various applications, e.g., military surveil-

lance, commercial sector and personal area networks [1]. However, due to the limita-

tion of resources and openness nature, MANETs are suffering from an increasing 

number of security intrusions e.g., DDoS, wormhole and sybil attack [2]. To prevent 

and mitigate these intrusions, one important thing that should be done is to design 

intrusion detection systems (IDS) to identify intruders, intrusion time/location and 

intrusion activity. The existing IDSs are roughly divided into two categories: non-

cooperative IDS (NCIDS), and cooperative IDS (CIDS) [3]. Because no interaction 

between multiple NCIDSs takes place, NCIDSs cannot detect sophisticated and dis-

tributed attacks. To address this problem, CIDS has been proposed. In CIDS, if an 

IDS node detects an intrusion with weak or inconclusive evidence, then it initiates a 

global detection procedure and invites other nodes that run IDS agents to cooperative-
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ly participate in the detection. Compared with NCIDSs, CIDSs with high accuracy, 

high scalability and low computation overhead have been widely used. 

Motivation: In spite of the above advantages, the existing CIDS scheme cannot effi-

ciently work in MANETs, because most nodes in MANETs are selfish and disinter-

ested in helping others to detect an intrusion event for the following reasons: (1) Re-

source limitation. Most nodes in MANETs own the limited resources (including com-

putation resources and communication resources); they have to save these resources 

for their own communications. (2) Privacy issues. Most nodes depend on open wire-

less channels to communicate. As a result, an attacker easily detects other nodes’ 

presence, recognizes their identifications and tracks their locations by periodically 

monitoring data traffic. Thus, without enough incentives a selfish node cannot coop-

erate timely and the number of cooperators drastically decreases, thus intrusion detec-

tion rate is greatly reduced. Therefore, we should design an incentive mechanism to 

incentivize nodes to cooperate timely and ensure that, once a detection task is released, 

potential cooperators will immediately participate in task.  

From the aspect of methodology being used to incentive participation, the existing 

work can be roughly divided into two categories [4]: game-theoretical approaches and 

non-game-theoretical approaches. In most of non-game-theoretical approaches, a 

center platform is often designed to allocate incentive resources (e.g., digital cash) to 

cooperators and maximize its utility. However, these approaches often ignore the 

optimal utility of cooperators. To address this problem, the game-theoretical ap-

proaches are proposed. In these approaches, each potential cooperator is usually as-

sumed to be rational. That is, individual users make their strategic choice on a wholly 

rationally determined evaluation of probable outcomes to maximize their utility. 

However, this assumption is not reasonable enough for MANETs, because MANETs 

have a large number of mobile nodes and their network topology frequently changes. 

As a result, most nodes do not know the global topology completely in practice. 

Namely, compared with the adequate rationality assumption in traditional game theo-

ry, it is more realistic to consider the nodes in MANETs to be with bounded rationali-

ty 

Contribution: In this paper, we assume that nodes in MANETs are not adequate 

rationality but bounded rationality, and the game aspects of CIDSs are investigated. 

Our main contributions are as follows. 

1) Considering bounded rationality of users and dynamics of cooperative intrusion 

detection, we formulate the incentive mechanism for cooperative detection as an 

evolutionary game. 

2) We design a budget-assignment mechanism to encourage nodes to timely 

cooperate and achieve the Evolutionary Stable Strategy (ESS) in our evolutionary 

game. 

3) We design an ESS-based algorithm and carry out the simulation. The results 

show that our proposed strategy can efficiently incentivize nodes to participate in 

cooperation. 

The rest of this paper is organized as follows. In Section 2, we discuss the related 

work. In section 3, we introduce our system model. Section 4 formulates the incentive 
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scheme as an evolutionary game and analyzes the factors that affect nodes’ benefit. 

We conduct game analysis in section 5. Simulations and their analysis are given in 

section 6. We draw a conclusion in section 7. 

2 Related Work 

2.1 Cooperative IDS 

In our paper, selfishness of nodes in MANETs is assumed to be caused by the pri-

vacy issues and concerns of resource overhead; thus, in this subsection, we discuss the 

related work from the aspects of privacy protection and resource overhead.  

Privacy protection. A large number of techniques (e.g. Bloom filter[5], multi-party 

computation [6] [7] and different privacy [8]) have been proposed to address the pri-

vacy requirements in intrusion detection. For example, Shu et al. [5] designed a pri-

vacy protection scheme by combining Bloom filters along with a trusted list of partic-

ipant peers. In GrIDS [3], a cooperator can only observe intrusion activity restricted 

within its boundaries to protect privacy. Using additive homomorphic encryption, Do 

et al. [7] designed a privacy-preserving scheme for sharing and processing intrusion 

alert data. Jin et al. [9] formulated privacy protection in cooperative IDS as a Stackel-

berg game and obtained Stackelberg-Nash equilibrium. Although these approaches try 

their best to protect privacy, privacy information might be still leaked in practice [10]. 

Thus, a selfish node might be disinterested in helping others to detect abnormal be-

haviors. 

Resource overhead. In CIDSs, a cooperative node has to exchange its local observa-

tions with others, thus, incurring high resource overhead. To reduce overhead, several 

solutions have been proposed. For instance, Hassanzadeh et al. [11] formulated opti-

mal monitoring in CIDS as a multi-objective optimization problem and developed a 

genetic algorithm to decrease computation complexity. Pérez et al. [12] introduced 

the notion of trust diversity among to increase both in detection quality and reduce 

communication overhead. Subba et al. [13] used a packet header anomaly detector to 

analyze the data packet’s header and minimize the computational overhead. Undoubt-

edly, if a node cooperates, its consumed resources could not be ignored. Thus, a self-

ish node does not cooperate still. 

2.2 Incentive Mechanism 

Although a large number of efforts have been spent on incentivizing selfish nodes 

to cooperate, little work focuses on the incentives in IDS. Thus, in this subsection, 

incentive mechanisms, designed for participatory sensing (which can be potentially 

used in CIDS) are overviewed. From the aspect of methodology, the existing incentive 

mechanism can be roughly divided into the two categories [4]: non-game-theoretical 

approaches and game-theoretical approaches.  

The non-game-theoretical approaches, designed for specific or general applications 
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can be divided into three categories: QoI (quality of information)-aware mechanisms 

[14][15], resource-aware mechanisms [16][17] and privacy-aware mechanisms[18]. 

Guo et al. [14] designed an incentive mechanism for IoT searches to collect real-time 

data. Considering data quality, Peng et al. [15] paid the participants as how well they 

do, to motivate the rational participants to efficiently perform tasks. Zheng et al. [16] 

studied on the coverage problem for incentive-compatible mobile crowd-sensing and 

proposed a budget feasible and strategy-proof incentive mechanism for weighted 

coverage maximization. Ma et al. [18] leveraged a conditional random field to model 

the spatio-temporal correlations among the contexts, and proposed a speed-up algo-

rithm to preserve privacy while maximizing the amount of data collection. Although 

these approaches efficiently maximize the data quality at acceptable costs, they do not 

maximize the participant utility. 

To address this problem, the game-theoretical approaches are proposed. In these 

approaches, each player is assumed to be rational and selfish and interested in maxim-

izing its own utility. Yang et al. [19] used a Stackelberg game to design an incentive 

mechanism and show how to compute the unique Equilibrium. Guo et al. [20] and Lv 

et al. [19] used coalitional game theories to evaluate cooperation in MANETs and 

VANETs, respectively. Mukhopadhyay et al. [21] proposed a truthful quality adaptive 

participatory sensing in an online double auction environment. However, these efforts 

focus on the short-term utility of cooperators and ignore the long-term benefit. To 

address this problem, the repeated game for MONs is proposed [22]. Yin et al. [22] 

use the “dissemination interesting” to motivate nodes to forward advertisement. Ob-

viously, notation “dissemination interesting” is not suitable for intrusion detection.  

In these approaches, players are assumed to be completely rational. These assump-

tions are not reasonable enough for MANETs, because nodes in MANETs moves 

over time and network topology frequently changes. As a result, the global topology 

is unknown by most nodes in practice. This means that nodes in MANETs are not 

adequate rationality but bounded rationality. Additionally, in these approaches, the 

real-time requirement is not considered. Obviously, this requirement is critical for 

intrusion detection and if, without timely detection, cooperative detection will not 

come to fruition. 

3 Basic Idea and System Model 

In CIDSs for MANETs, a potential cooperator that runs an IDS agent participates 

in the global intrusion detection, as follows. If a node (named initiator, e.g., n0) de-

tects an intrusion even with weak or inconclusive evidence, then it initiates a global 

detection procedure and sends a detection request (or detection task) to potential co-

operators , where N is the number of potential cooperators. Once 

receiving this request, cooperators start local detections and report the detected ab-

normal behaviors to the initiator. After receiving r detection reports, the initiator clus-

ters, merges and correlates these abnormal behaviors. If the initiator confirms an in-

trusion with sufficient evidence, then it alerts the whole networks regarding an attack. 

Generally, the more nodes participate in the detection, the higher is the intrusion de-
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tection rate. Without loss of generality, we assume that detection rate for each node is 

ρ. If r nodes participate in cooperating, then the overall detection rate odr is  

                    (1) 

As shown in Section 1, if a node participates in detecting an intrusion, its privacy 

might be exposed and its resource might be consumed. Thus, selfish nodes are 

typically disinterested in helping others. To encourage nodes to timely cooperate, an 

auction approach is used in this paper. In detail, we regard the detection service as 

goods, each potential cooperator that detects an intrusion event acts as an offer, sells its 

service and wins virtual credits, and the initiator n0 acts as a bidder and pays for the 

service to cooperators.  

 More specially, for each potential intrusion event to be detected, node n0 

divides the whole detection time into slices with the same length, indexed by natural 

numbers. In a time slice, a sub-auction is performed. In each sub-auction, the detection 

service that a potential cooperator provides is called a sub-service. Before each sub-

auction (i.e., at the first time-slice) starts, the initiator n0 constructs a sub-auction pool. 

Before the sub-auction ends, each potential cooperator can enter the pool. When the 

auction starts, the initiator n0 broadcasts the total of budget  that n0 will pay for 

the total detection service. A potential cooperator ni (1≤i≤N) calculates its cost for 

the service and evaluates its possible benefit. Based on the cost and the benefit, 

cooperator ni decides whether to make an offer or not. When a time-slice ends (i.e., this 

sub-auction ends), the winning neighboring nodes provide the sub-services. After 

completing the service, the potential cooperator obtains the rewards from initiator n0 

and the next sub-auction starts. Note: the intrusion event to be detected in the next sub-

auction is the same with the intrusion of the previous sub-auction. The whole auction 

ends if all time-slices are exhausted or odr is greater than the threshold value given by 

initiator n0.  

4 Budget and Cost 

In this section, we discuss the budget of the initiator and the cost of potential 

cooperators in cooperative detection. 

4.1 Total budget  

In our work, we use virtual credits to motivate nodes to cooperate. That is, virtual 

credits are paid to cooperators after a detection task is completed. The total reward for 

the whole detection relies on budget. Because the main goal of an initiator is to im-

prove the intrusion detection rate, a higher detection rate required means a more 

budget that initiator n0 should pay to cooperators. In our work, for an intrusion event 

to be detected, we use  to denote the budget that n0 is willing to pay for the detec-

tion. Let  be the actual detection rate provided by the neighboring nodes after the 

total auction ends. The total reward paid to all cooperators for the whole detection is 

× . Note: the total reward depends on the budget  and the actual , and the 
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entire budget does not have to be used up. This approach is rational. For example, 

assume that initiator n0 offers the higher budget to encourage more cooperators, but 

only one node cooperates. Obviously, in this case, it would be inappropriate for n0 to 

assign the total budget to the only cooperator. 

4.2 Budget assignment 

It is of importance to design an appropriate mechanism to assign the budget to the 

cooperators. In cooperative detection, one of important concerns is the real-time. That 

is, an assignment mechanism should ensure that, once initiator n0 requests its potential 

cooperators to help it detect its data, these cooperators will immediately participate in 

detection and no one will be in a “wait and see” state. If a node is in this state, data 

provided by this node are the old ones. To address this problem, the designed budget-

assignment scheme should guarantee that, a cooperator who timely participates in 

detection receives more rewards than a procrastinator. That is, the earlier a node 

participates in a cooperation, the more its reward is.  

Let  denote the number of nodes who cooperatively complete the detection at the 

end of sub-auction i . Thus, the number  of cooperators in sub-auction i  is = -

. The reward , paid to a cooperative node in sub-auction i , is defined as 

follows.  

                       (2)  

Proposition 1. If 0   1 and the arriving rate is the same, the  paid to the 

cooperator of sub-auction i  is always greater than  paid to the node of 

sub-auction .  

Proof. According to Formula (2), the second derivative of  with respect to 

variable x is  

                          (3) 

Due to 0   1 and ,  holds. This means that  is convex 

regarding variable x . Because is the discrete version of , 

 holds. We can reach this proposition. 

Note: This budget-assignment scheme guarantees that, the benefit of an early 

cooperator is greater than or equals the benefit of the later one, but not “strictly greater 

than” (because all cooperators in a sub-auction averagely share the rewards paid for 

this sub-auction). If there is only one cooperator in each sub-auction, the benefit of an 

early cooperator is strictly greater than the benefit of the later one. We do not adopt 

this scheme because of privacy protection, discussed in the next subsection.  

4.3 Privacy cost  

As shown in Section 1, privacy is a key element that affects a potential cooperator 

whether to participate in cooperation. To mitigate privacy leakage, several techniques 

(e.g., pseudonyms and different privacy [8]) have been designed. In our work, 
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pseudonyms technique is used to protect privacy: in a sub-auction, cooperators 

simultaneously and silently change their pseudonym. We use uncertainty, describing a 

situation involving ambiguous and/or unknown information, to measure a privacy level 

[23], as follows. 

Assume that  cooperators simultaneously and silently change their pseudonym 

while detecting an intrusion. Then the privacy level of each cooperator is defined as 

. When 1  (that is, only one node changes its pseudonym), the 

privacy level reaches minimum and equals 1. In this case, an adversary can accurately 

relate the new pseudonym with the old one, thus, privacy cost reaches the highest. In 

our model, privacy cost  of a cooperator in sub-auction i  inversely proportional 

to its current privacy level, defined as follows. 

                    (4) 

Where  is the cost of a pseudonym. From Formula (4), we can see that, priva-

cy cost equals , if there is only one cooperator. 

5 Evolutionary Cooperation Game and its Analysis 

We model cooperative detection in an inadequate rational environment as an evolu-

tionary game. We refer to this model as Evolutionary Cooperation game. The key 

aspect of the game-theoretic analysis is to consider benefit and cost of a potential 

cooperator. For a potential cooperator, if its benefit is greater than its cost, it will co-

operate. Next we define our game.  

5.1 Evolutionary Cooperation Game 

Evolutionary Cooperation game is defined as a triplet  , , ), 

where  =  is the set of a potential cooperators,   is the set 

of strategies of nodes, where  denotes the strategy chosen by 

(1 )j N  , C and D stand for Cooperation and Defect, respectively. For simplici-

ty, the strategy chosen by node j is denoted by  and strategies of all nodes but j are 

denoted by set .   is the set of payoff 

functions of nodes at sub-auction , where the payoff  of node  in sub-

auction  is the difference between its gain and its cost, defined as follows.  

• If there are  cooperators in sub auction i, then the payoff   for 

cooperator j is   

                 (5) 

• Otherwise, the payoff  for defector j equals 0. 
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In Formula (5), a potential cooperator easily obtain parameters , ,  and . If 

a node knows the number  of cooperators in Formula (5) in advance, then it can 

easily make an optimal decision. Namely, for node j, if >0, then its opti-

mal section is to participate in cooperation; otherwise it will reject cooperation. How-

ever, in practice, no node apart from the initiator knows  because  is the private 

information of the initiator. To address this problem, we formulate the game as evolu-

tionary game. Namely, a potential cooperator plays game repeatedly and its behavior 

evolves over time. At time t, a potential cooperator chooses strategy s ( ) 

with probability X ( ); at time (t+1), it adjusts the probability with the growth 

rate X , where is proportional to the difference between its current payoff  that 

adopts strategy s and the current average payoff  of all nodes. Given parameters 

, ,  and , if probability X converges to evolutionary stable strategy (ESS) x 

regardless the initial value of X, then the optimal decision for the potential cooperator 

is to cooperate with probability x. To calculate the ESS, we define replicator dynam-

ics as follows. 

5.2 Replicator Dynamics  

To specify replicator dynamics, we first define the notations as shown in Table I, 

where  and . Repli-

cator dynamic express which describes how X change with time t, can be defined as 

follows.  

                    (6) 

 

Table I. Notations in Replicator Dynamics 

X Probability with which nodes use the cooperation strategy 

N Number of potential cooperators 

u(C) Benefit of a cooperator 

 Average benefit of cooperators 

 

5.3 Evolutionary Stable Strategy Analysis 

An evolutionary stable strategy (ESS) is a strategy which if adopted by 

a population cannot be invaded by any competing alternative strategy1. Namely, strat-

egy X is an ESS if the following two conditions are satisfied [24]: 1) an individual 

adopting strategy X must do better against another individual adopting strategy X than 

any other strategy; and 2) should a new strategy evolve (X') that does equally well 

against strategy X for X to be an ESS, an individual employing strategy X must do 

better than an individual employing strategy X'. Formally, let u(s, t) represent the 

utility for playing strategy s against strategy t, the strategy pair (s, s) is an ESS in a 

two player game if and only if one of the following conditions is true for both players 

and for all t≠s: 

                                                           
1 https://en.wikipedia.org/wiki/Evolutionarily_stable_strategy 
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1. u(s, s) > u(t, s), or 

2. u(s, s) = u(t, s) and u(s, t) > u(t, t) 

Next, we conduct an ESS analysis.  

Let =0.We have X=0,1 or X which satisfy the following equation: 

               (7) 

The derived function of f(X) is： 

, where   

. 

• Consider X=1. If  , then X=1 

can be ESS. That is, if , then X=1 is ESS. 

• Consider X=0. Because the derived function of f(X) is not well-defined at 0, we 

consider the limit of derived function at 0.  

,  

where

, 

, 

=0. 

So,   

 

Due to , we have the 

following results. 

 . 

Namely, when  holds, X=0 is ESS.  

• Given ρ, λ, γ, N and ri-1, if the solution of equation  exists (let it be ) and 

, then X=  is an ESS.  

Given ρ, λ, γ, N and ri-1, we can easily obtain its solutions of Formula (7) using 

either bisection or Newton’s method [25]. Based on the ESS, we can design algorithms 

(as shown in algorithms 1 and 2) to incentivize inadequately rational nodes to 

maximize their benefit. 
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Algorithm 1. Game for Initiator 

Initiating phase: given a potential intrusion event to be detected,  selects a budget 

, the round rd of the allowed sub-auctions, the allowed auction period  for each 

sub-auction and the expected overall detection rate ;  sets the initial number of 

cooperators , the initial overall detection rate  and the current auction 

round ; 

Auction phase:  

While (  and ) 

 broadcasts ,  and  to its all potential cooperators; 

; 

For ( ; ; ) 

 records the number  of bidders; 

If the sub-auction period >  

Then break; 

End For;  

; 

Computing odr=  according to Formula (1); 

End while 

Pay-off phase: 

 After completing detection,  allocates rewards to each bidder according to Formula 

(3). 

6 Experiment Evaluation 

In the simulation, without the special statement, we set the default value of the 

parameters to ρ=0.5, =1, =100, and N=15. 

Evolution Process. We fixed parameters ρ, , and N, and then picked different  and 

initial cooperation probability x of a neighboring node in order to check how the 

evaluation process is conducted. The evolution was updated in the following manner: 

, where t=0.001 is a step size. From Figure 1, we can see that for a 

given total budget , the replication dynamics always converges to the ESS  

regardless the initial probability x. 

Cost v.s. Cooperation Probability. Figure 2 presents the change of cooperation 

probability over pseudonyms cost. From Figure 2, we can see that, given the number of 

potential cooperators N, the cooperation probability x decreases as the pseudonyms 

cost  increases, and increases as budget  increases. This phenomenon is reasonable: 

if privacy cost increases or budget decreases, then the benefit of a node in each 

cooperation decreases, thus, it is disinterested in cooperation. 

Number of completed tasks. In the experiment, we adopted a city scenario including 

17937 GPS records of 1792 taxis in three representative areas of Beijing – the 

Guangqumen area, covering 1.885km×1.752km, the Shijingshan area, covering 

1.078km×2.532km, and the Changping area, covering 3.144km×5.701km. These 
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records were gathered from 8:00:00 a.m. to 8:59:59 a.m. on August 13, 2015. During 

this period, the densities of vehicles in the Guangqumen, Shijingshan and Changping 

areas were high, middle and low, respectively (namely a dense scenario, a medium 

scenario, and a sparse scenario, respectively). The numbers N of potential cooperators 

of the three areas (which denote the numbers of taxis of the three areas) are 824, 526 

and 442, respectively. We assume that: (1) each passenger in a taxi own a smartphone 

to collect data, (2) budget =50, detection rate ρ=0.65, pseudonyms cost =0.2, the 

odr required by node n0 is greater than 0.98, then according to Formula (1), at least 5 

neighboring nodes cooperatively detect the data collected by n0. Assume that Next, 

we discuss 5 strategies: ‘selflessness’ strategy (i.e., all nodes are selfless), ‘70%-

selflessness’ strategy (i.e., 70 percent of nodes are selfless), ‘30%-selflessness’ strate-

gy (i.e., 30 percent of nodes are selfless), ‘selfishness’ strategy (i.e., all nodes are 

selfish) and our strategy. 

Algorithm 2. Game for Potential Cooperator 

Initiating phase: Each potential cooperator first sets ,  and observes the number N 

of potential cooperators;  

Auction phase:  

The potential cooperator receives ,  and  from the initiator; 

If  holds 

Then the potential cooperator participates in detecting the intrusion event 

Else If   holds 

Then the potential cooperator refuses to cooperate. 

End if 

Else 

Calculate the probability X by solving Formula (7); 

If g(X)<0 holds  

Then the potential cooperator participates in detecting the intrusion event 

with probability X; 

Else the potential cooperator refuses to cooperate. 

End if 

End if 

Pay-off phase. If the potential cooperator bids, then it participates in detection. After 

detecting the intrusion, it gets rewards from the initiator. 

As shown in Figure 3, the number of tasks completed in our approach is always 

greater than the number in the other approaches. For instance, when the number of 

initial pseudonyms is 10, we can see that: (1) In the dense scenario, 2622 tasks were 

completed if the 70%-selfless approach was used, 3158 tasks were completed if the 

selfless approach was used, and 3478 tasks were completed if our approach was used. 

(2) In the sparse scenario, the number of tasks completed in our approach was 54 

times greater than the number of tasks completed in the 30%-selfless approach. The 

reason is as follows: if without incentive, once pseudonyms of a node are exhausted, 

it does not detect messages any more. In our approach, even if pseudonyms of a node 
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are exhausted, it can use the obtained reward enough to purchase new pseudonyms. 

Therefore, our approach has overwhelming advantages over the other approaches. 
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Figure 1． Evolution Process  Figure 2． Cost v.s. cooperation probability  
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Figure 3. Number of initial pseudonyms v.s. number of completed tasks. 
 

7 Conclusion 

We have considered the incentive mechanism for cooperative detection to motivate 

nodes to participate in cooperation. In detail, a game-theoretic approach is proposed to 

guarantee that mobile nodes participating in detection maximize their utility while 

reducing resource consumption. To address the problem that nodes are inadequately 

rational, we have established evolutionary games. We also have developed algorithms 

for evolutionary game to encourage nodes to participate in cooperation. The simulation 

demonstrates the efficiency of our approach. 
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