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Abstract. Insider threat detection has attracted a considerable attention from the 

researchers and industries. Existing work mainly focused on applying machine-

learning techniques to detecting insider threat. However, this work requires 

“feature engineering” which is difficult and time-consuming. As we know, the 

deep learning technique can automatically learn powerful features. In this pa-

per, we present a novel insider threat detection method with Deep Neural Net-

work (DNN) based on user behavior. Specifically, we use the LSTM-CNN 

framework to find user’s anomalous behavior. First, similar to natural language 

modeling, we use the Long Short Term Memory (LSTM) to learn the language 

of user behavior through user actions and extract abstracted temporal features. 

Second, the extracted features are converted to the fixed-size feature matrices 

and the Convolutional Neural Network (CNN) use these fixed-size feature ma-

trices to detect insider threat. We conduct experiments on a public dataset of in-

sider threats. Experimental results show that our method can successfully detect 

insider threat and we obtained AUC = 0.9449 in best case. 

Keywords: Insider Threat, Anomaly Detection, Deep Learning, Network Secu-

rity. 

1 Introduction 

Insider threat is becoming a serious security challenge for many organizations. It is 

generally defined as malicious actions performed by an insider in a secure environ-

ment, often causing system sabotage, electronic fraud and information theft. Hence, it 

is potentially harmful to individuals, organizations and state security. Recently, insid-

er threat detection has attracted considerable attention in both academic and industrial 

community.  

Insider threat detection becomes an extremely complex and challenging task. The 

reasons are as follows. First, insiders do unauthorized things by the use of their trust-

ed access. Hence, external network security devices (intrusion detection, firewalls, 

and anti-virus) cannot detect them. Second, insider attack manifests in various forms, 
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such as a disgruntled employee planting a logic bomb to disrupt systems, stealing 

intellectual property for personal gain, etc. The diversity of insider attack increases 

the complexity of insider threat detection. The last but not the least, insider threat 

often performed by insiders during working hours, causing insider’s anomalous be-

haviors scattered in large amounts of normal working behaviors. Therefore, it increas-

es the difficulty of insider threat detection. 

The key of insider threat detection is to model a user’s normal behavior to detect 

anomalous behavior. Much work has been proposed to address the issue [1-2]. They 

aggregate all the actions of a user in one day to represent the user’s behavior in the 

same day. However, the anomalous behavior happening within one day may be 

missed. For example, a user logs on to his assigned computer after hours and uploads 

data to wikileaks.org. We argue that using user action sequences for each user is very 

important in detecting insider threat. 

To address this problem, we propose a novel insider threat detection method to de-

tect whether user behavior is normal or anomalous. Specifically, it is not efficient that 

we directly use the LSTM to classify the user action sequence, because the output of 

the LSTM only contains a single bit of information for every sequence. Instead, we 

use the trained LSTM to predict next user action, and use a series of hidden states of 

the LSTM model to generate a fixed-size feature matrix that is given to the CNN clas-

sifier. The LSTM can better capture the long term temporal dependencies on user 

action sequence, because hidden units of the LSTM potentially record temporal be-

havior patterns. 

To summarize, in this paper, we make the following contributions:  

(1) We present a novel insider threat detection method with LSTM and CNN based 

on user behavior.  

(2) We use the LSTM to learn the language of user behavior through user actions 

and extract abstracted temporal features which are the input of the CNN classifier.  

(3) Experimental results on a public dataset of insider threats show that our pro-

posal can successfully detect insider threat and we obtained AUC = 0.9449 in best 

case. 

The rest of this paper is organized as follows. We summarize the related work in 

Section 2, and give a detailed description of our insider threat detection method in 

Section 3. Implementation details and experimental results for this work are shown in 

Section 4. Finally, we conclude the paper’s work in Section 5. 

2 Related Work 

Related work falls into two main categories, insider threat detection and deep neural 

network. 

Insider Threat Detection: The problem of insider threat detection is usually 

framed as an anomaly detection task. A comprehensive and structured overview of 

anomaly detection techniques was provided by Chandola et al. [3]. They defined that 

the purpose of anomaly detection is finding patterns in data which did not conform to 

the expected behavior. The key problem of anomaly detection is how to model a us-
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er’s normal behavior profile. A lot of research work has been proposed to develop 

anomaly detection, especially machine learning. 

Early work on anomaly detection based on user command proposed by Davison et 

al. [4] and Lane et al. [5]. They examine user command sequences and compute the 

match degree of a current command pattern with the historical command pattern to 

classify user behavior as normal or anomalous.  

After that, anomaly detection begins to take advantage of machine learning tech-

niques, such as Naive Bayes [6], Eigen Co-occurrence Matrix (ECM) [7], One-Class 

Support Vector Machine (OC-SVM) [8] and Hidden Markov [9]. Schonlau et al. 

compared the performance of six masquerade-detection algorithms on the data set of 

“truncated” UNIX shell commands for 70 users and experimental results revealed that 

no single method completely dominated any other. Maxion et al. [6] applied the Naive 

Bayes classifier to the same data set [17], inspired by Naive Bayes text classification. 

They also provided a thorough and detailed investigation of classification errors of the 

classifier in [18]. Oka et al. [7] argued that the causal relationship embedded in se-

quences of events should be considered when modeling a user’s profile. They devel-

oped the layered networks approach based on the Eigen Co-occurrence Matrix (ECM) 

and extracted the causal relationships embedded in sequences of commands to sup-

plement user behavior model. Salem et al. [19] evaluated the accuracy performance of 

the nine methods mentioned above using the Schonlau dataset, but the results revealed 

that their detection rates were not high. Szymanski et al. [8] used an OC-SVM classi-

fier for insider threat detection. However, the approach needed mixing user data and it 

was hard to implement in a real-world setting. Rashid et al. [9] proposed an approach 

to insider threat detection by the use of Hidden Markov. They used Hidden Markov to 

model user’s normal behavior via user actions and regarded deviations from the nor-

mal behavior as anomalous behavior. The effectiveness of the method is highly im-

pacted by the number of the states. However, the computational cost of the Hidden 

Markov model increases as the number of states increases. 

The works mentioned above make use of machine learning techniques to build a 

classifier. On one hand, machine learning requires “feature engineering” which is 

time-consuming and difficult. On the other hand, the classifier is too simple, resulting 

in a low detection rate.  

Deep Neural Network: Recently, deep neural network that can automatically 

learn powerful features has led to new ideas for anomaly detection. Tang et al. [10] 

applied the deep learning methodology to build up an anomaly detection system, but 

the experimental results in the testing phase were not good enough. Veerama-

chananeni et al. [11] used a neural network auto-encoder to detect insider threat. They 

aggregated a number of numeric features over a time window and fed these features 

to an ensemble of anomaly detection methods: Principal Component Analysis, neural 

networks, and a probabilistic model. However, individual user activity was not explic-

itly modeled over time. Tuor et al. [2] proposed a deep learning approach to detect 

anomalous network activity from system logs. They trained Recurrent Neural Net-

works (RNNs) to recognize characteristic of each user on a network and concurrently 

assessed whether user behavior is normal or anomalous. While this method aggre-

gates features over one day for individual users, it is possible to miss anomalous be-
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havior happening within one day. Instead, our model is trained using user action se-

quences with DNN. The actions that a user takes over a period of time on a system 

can be modeled as a sequence. The action sequences of user’s normal behavior are 

seen often or on a usual basis. Observed action sequences deviated from those normal 

action sequences are regarded as anomalous behavior. Therefore, our model can de-

tect anomalous behavior through user actions and even can detect anomalous behavior 

happening within one day. 

3 Proposed method 

In this section, we introduce the details of our insider threat detection method. The 

proposal applies DNN in two stages. The first stage extracts the abstracted temporal 

features of user behavior by the LSTM and outputs feature vectors. Then the feature 

vectors are transformed into fixed-size feature matrices. In the second stage, these 

fixed-size feature matrices are fed to the CNN to classify them as normal or anomaly. 

Trained

LSTM

Trained

CNN

Feature extract
Fixed-size feature 

matrices Classification

User k

(k=1,…,K)

K users

For each user

Sequences of user actions

（Variable length sequences）

A sequence of user actions

User k

(k=1,…,K)

Day 1: logon,web visit,email,… 

Day 2: logon,web visit,email,… 

Day J: logon,web visit,file,… 

LSTM CNN

Training the 

LSTM 

model

Training the 

CNN

model

Fixed-size 

feature matrices

The probability

of anomalous 

behaviour

Training

Testing

Day j: logon,web visit,file,email,… 

 … 

Fig. 1. Overview of proposed method 

3.1 Overview 

The overview of our insider threat detection method is shown in Fig. 1. The individu-

al action (e.g., logging onto an assigned computer afterhours) represents the operation 

of a user; actions taken by a user in one day represent user behavior. Similar to natural 

language modeling, an action is corresponding to a word and an action sequence is 

corresponding to a sentence. For that reason, we attempt to learn the language of user 

behavior as a new method for detecting insider threat. The LSTM is used to extract 

the features of user behavior. The CNN uses these features to find anomalous behav-

ior. 
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Let   *          + be the set of K users. For a user   (     ), we can 

obtain his action sequences over   days,   0                   1, where      (  

   ) is a vector which denotes the action sequence on the day indexed by  . In the 

training phase, we first obtain an action sequence       that user    has performed 

within the day indexed by  . Second, the action sequence       is then fed into the 

LSTM and the LSTM is trained to construct a feature extractor to obtain the abstract-

ed feature vectors in the deep layer. Third, the feature vectors are transformed into a 

fixed-size matrix      . The fixed-size feature matrix potentially contains various 

abstracted temporal features that represent user behavior. Finally, we use these fixed-

size matrices annotated with normal or anomalous to train the CNN. In the testing 

phase, we evaluate the approach with the trained LSTM and the trained CNN. The 

detail of each step is described in the following subsections. 
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Fig. 2. Flow of LSTM training 

3.2 Training LSTM for Feature Extraction 

Based on the user action sequences, we construct a feature extractor which can auto-

matically extract abstracted temporal features from each input action sequence. The 

LSTM consists of an input layer, an embedding layer, three LSTM layers, and an 

output layer. The flow of the LSTM is shown in Fig. 2. 

For user    on the day indexed by  , let   be the length of the action sequence, 

      ,  
    
   
    
     

    
-.   

    (     ) represents an individual action at time 

instance  .  
    

    (           ) denotes the hidden state of hidden layer   at 

time instance  .   
    (     )  denotes the output at time instance  . Here we use 

one-hot encoding to embed the input   
    

 as a vector   
    (     ). The one-hot 

encoding is performed as follows: 
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1. Creating a dictionary in which IDs and actions are associated with each other, such 

as logging on an assigned PC after hours is denoted as 1, logging off an assigned 

PC after hours is denoted as 2, etc. 

2. Converting actions to one-hot vectors, which is 1 at the action ID position, and 0 

elsewhere. 

The LSTM with three hidden layers (       ) is described by the following equa-

tions: 

    
    

  (  
(   )

      
    

   
(   )
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Where     
    

   
    

, and     
    

,     
    

 are set to zero vector for all      .  ( ) is 

the sigmoid function and ⊙ denotes element-wise multiplication. Vector  
   

    
 is a 

hidden representation, vector     
    

 decides which values to update, vector     
    

 decides 

which things to forget, vector     
    

 decides what to be outputted. 24 weight matrices 

( ) and 12 bias vectors ( ) are learned parameters. 

The LSTM is repeatedly trained using user action sequences. First, we take an in-

put series of user    as a vector       [ 
 

    
  

 

    
, , 

 

    
]. Second, the embedding 

layer converts the series of actions       to one-hot vectors       [ 
 

    
  

 

    
, , 

 

    
]. 

Third, we sequentially input each one-hot vector   

    
 to the LSTM and the LSTM 

outputs prediction  
 

    
. Finally, we calculate the cross-entropy loss function by com-

paring prediction  
 

    
 with answer  

   

    
. 

In training phase, we apply Dropout [12] to the LSTM in a way that can reduce 

overfitting. The dropout operator is only applied to the non-recurrent connections. 

One epoch means that all training user action sequences are inputted to the LSTM. 

The order of user action sequences is randomized in every epoch. The LSTM training 

is executed for multiple epochs. After training, we obtain the trained feature extractor. 

Then we extract the hidden state of the last hidden layer (the third layer in Fig. 2) for 

every input and obtain a series of feature vectors       [ 
   

    
  

   

    
, , 

   

    
]. 
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3.3 Fixed-size Feature Representations 

As the designed classifier accepts fixed-size representations and the number of actions 

differs between user action sequences, we need to construct a fixed-size feature ma-

trix for the series of feature vectors which is provided as input of the CNN. 

To deal with this, we decided on a maximal length     and a minimal length     

for any action sequence for user   . We ignore all sequences whose length are shorter 

than    . For all sequences with more than     steps, we keep only the first     

actions.  For all sequences whose length   is between     and    , we pad them with 

zeros until their lengths reach    . By this way, we can convert the series of feature 

vectors       [ 
   

    
  

   

    
, , 

   

    
]  into a fixed-size feature matrix       of dimen-

sions        , where     is the dimension of the last hidden layer. We map each 

element of        to the [0,1] space by sigmoid function. Finally, we obtain the fixed-

size feature matrix       of dimensions        . 

Input Conv1 Pool1 Conv2 Pool2
Fully

Connection

Convolution

Pooling

Full Connection

Output

V ku

N ku
1W

1H

1W

2

1H

2

2W

2H

2W

2

2H

2

Fig. 3. Structure of the CNN 

3.4 Training CNN for Detecting Insider Threat 

The final component of our approach is the classification stage. We use the CNN to 

classify the fixed-size feature matrices of user behavior into normal behavior and 

anomalous behavior. The CNN consists of an input layer, two convolution-pooling 

layers, a fully-connected layer, and an output layer. For user   , the dimension of the 

input layer is         and the dimension of the output layer is two. Fig. 3 shows 

the structure of the CNN. 

We first train the CNN by using fixed-size feature matrices annotated with normal 

or anomaly. Also the softmax function is applied to the output of the CNN. After 

training, we use the trained CNN to calculate anomalous probability of a user action 

sequence. 
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Table 1. Enumeration of User Actions 

Time Computer Activities ID Action Description 

In-
hourAction 
(8am and 
5pm) or 
After-

hourAction 
(5pm and 

8am) 

On an 
assigned 
PC or an 

unas-
signed 

PC 

Logon/Logoff 
activity 

1 Logon User logged on a computer 

2 Logoff User logged on a computer 

File  
activity 

3 
Copy exe 

file 
A exe file copy to a removable 
media device 

4 
Copy doc 

file 
A doc file copy to a removable 
media device 

5 
Copy pdf 

file 
A pdf file copy to a removable 
media device 

6 Copy txt file 
A txt file copy to a removable 
media device 

7 Copy jpg file 
A jpg file copy to a removable 
media device 

8 Copy zip file 
A zip file copy to a removable 
media device 

HTTP activity 

9 
Neutral   
website 

User visited a neutral website 

10 
Hacktivist 
website 

User visited a hacktivist website 

11 
CloudStor-

age website 
User visited a cloudstorage 
website 

12 
JobHunting 

website 
User visited a jobhunting web-
site 

Email  
activity 

13 
Internal 

email 
All recipients are company 
email addresses 

14 
External 

email 
There is an external address 

Device  
activity 

15 Connect 
User inserted a removable 
media device 

16 Disconnect 
User  removed a removable 
media device 

4 Experiments 

This section reports the experimental validation of the proposed method. We apply 

our method to the CMU-CERT insider threat dataset [13], which provides a synthetic 

dataset describing a user’s computer based activity. The dataset consists of infor-

mation on several different activities over a period of 17 months. Next, we first de-

scribe details of the dataset and evaluation method. Then we present the experimental 

results of our approach. 
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4.1 Dataset 

We perform experiments on the CERT insider threat dataset V4.2, because it contains 

more instances of insider threats compared to the other version of datasets. The da-

taset captures the 17 months of activity logs of the 1000 users (with 70 insiders) in an 

organization, which consists of five different types of activities: logon/logoff, email, 

device, file and http. Each log line is parsed to obtain details like a timestamp, user 

ID, PC ID, action details etc. We choose a comprehensive set of 64 actions over the 

five types of activities and build 1000 user specific profiles based on user action se-

quences. An example of a user action is visiting a job-hunting website between the 

hours of 8:00 am and 5:00 pm on an assigned computer. The enumeration of user 

actions is listed in Table 1. 

Over the course of 17 months, 1000 users generate 32,770,227 log lines. Among 

these are 7323 anomalous activity instances manually injected by domain expert, 

representing three insider threat scenarios taking place. 

We split the dataset into two subsets: training and testing. The former subset 

(~70% of the data) is used for model selection and hyper-parameter tuning. The latter 

subset (~30% of the data) is used for evaluating the performance of the model. Our 

classifications are made at the granularity of user-day. One note is that we removed 

the weekends of the data when we classify at the granularity of user-day, because the 

user behavior is qualitatively different for weekdays and weekends. 

Table 2. Parameters of the LSTM 

Model 
Dimension of three 

hidden layers 
Mini-batch size Epoch num 

LSTM1 60 20 10 

LSTM2 40 20 10 

LSTM3 20 20 10 

Table 3. Parameters of the CNN 

Model Conv1 Conv2 Activate function 
Mini-batch 

size 
Epoch num 

CNN1 32(4) 64(4) tanh 20 500 

CNN2 32(5) 64(5) tanh 20 500 

CNN3 32(6) 64(6) tanh 20 500 

CNN4 32(4) 64(4) relu 20 500 

4.2 Evaluation Method 

The dataset used for experiment is unbalanced, so we choose the Receiver Operating 

Characteristics Curves (ROC) and Area-Under-Curve (AUC) measure for evaluating 
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the proposed method. On one hand, we can visualize the relation between TPR and 

FPR of a classifier. On the other hand, the accuracy with two or more classifiers can 

be compared. 

 
(a) ROC curves for CNN1                      (b) ROC curves for CNN2 

   
(c) ROC curves for CNN3                       (d) ROC curves for CNN4 

Fig. 4. ROC curves for CNNs 

4.3 Results 

To compare the performance of the model with different parameters, we train our 

model with several parameters. When setting the parameters of the LSTM, we refer 

the setting of [14] which uses the LSTM in language modeling. In addition, the 

LSTM is trained using the ADAM [15] variant of gradient descent. The parameter 

settings of the LSTM are shown in Table 2. 

The parameters of the CNN were set by referring the setting of LeNet [16], which 

is used for recognizing hand written digit. Let a(b) denotes the number of filters (the 

shape of each filter) per convolutional layer. Max-pooling reduces the size of the in-

put into 1/2 with stride of 2. The parameter settings of the CNN are shown in Table 3. 

We evaluated the ROC curves for each of these CNNs, and later we compare the 

best performing CNN against the logistic regression classifier-based architectures (see 

Fig. 5). Fig. 4(a), Fig. 4(b), Fig. 4(c) and Fig. 4(d) show the ROC curves when CNN1, 

CNN2, CNN3 and CNN4, respectively, are used for classification. We can see that 

the different parameter settings differ only slightly. The performance of relu activa-

tion function is similar to the tanh activation function, using the same parameter set-
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tings. The LSTM2 with CNN3 provides better result than the other CNNs and gets the 

best result AUC = 0.9449. 

 

Fig. 5. ROC curves for CNN3 and Logistic Regression 

Fig. 5 compares the ROC curves of the best performing CNN3 plus the logistic re-

gression classifier-based architectures. The ROC results for the CNN classifier based 

architectures are better than the Logistic Regression version with the same language 

model (LSTM2). 

5 Conclusion 

In this paper, we proposed the insider threat detection method with deep neural net-

work. Because insider threat manifest in various forms, it is not practical to explicitly 

model it. We frame insider threat detection as an anomaly detection task and use 

anomalous behavior of a user as indicative of insider threat. The LSTM extracts user 

behavior features from sequences of user actions and generates fixed-size feature 

matrices. The CNN classifies fixed-size feature matrices as normal or anomaly. We 

evaluated the proposed method using the CERT Insider Threat dataset V4.2. Experi-

mental results show that our method can successfully detect insider threat and we 

obtained AUC = 0.9449 in best case. 
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