
Insider Threat Detection with Deep Neural Network

Fangfang Yuan1,2,3, Yanan Cao1,3, Yanmin Shang1,3, Yanbing Liu1,3() , Jianlong

Tan1,3 and Binxing Fang4

1
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2
School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3
National Engineering Laboratory for Information Security Technologies, Beijing, China

4 Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan,

Guangdong

{yuanfangfang, caoyanan, shangyanmin, liuyanbing,

tanjianlong}@iie.ac.cn, fangbx@cae.cn

Abstract. Insider threat detection has attracted a considerable attention from the

researchers and industries. Existing work mainly focused on applying machine-

learning techniques to detecting insider threat. However, this work requires

“feature engineering” which is difficult and time-consuming. As we know, the

deep learning technique can automatically learn powerful features. In this pa-

per, we present a novel insider threat detection method with Deep Neural Net-

work (DNN) based on user behavior. Specifically, we use the LSTM-CNN

framework to find user’s anomalous behavior. First, similar to natural language

modeling, we use the Long Short Term Memory (LSTM) to learn the language

of user behavior through user actions and extract abstracted temporal features.

Second, the extracted features are converted to the fixed-size feature matrices

and the Convolutional Neural Network (CNN) use these fixed-size feature ma-

trices to detect insider threat. We conduct experiments on a public dataset of in-

sider threats. Experimental results show that our method can successfully detect

insider threat and we obtained AUC = 0.9449 in best case.

Keywords: Insider Threat, Anomaly Detection, Deep Learning, Network Secu-

rity.

1 Introduction

Insider threat is becoming a serious security challenge for many organizations. It is

generally defined as malicious actions performed by an insider in a secure environ-

ment, often causing system sabotage, electronic fraud and information theft. Hence, it

is potentially harmful to individuals, organizations and state security. Recently, insid-

er threat detection has attracted considerable attention in both academic and industrial

community.

Insider threat detection becomes an extremely complex and challenging task. The

reasons are as follows. First, insiders do unauthorized things by the use of their trust-

ed access. Hence, external network security devices (intrusion detection, firewalls,

and anti-virus) cannot detect them. Second, insider attack manifests in various forms,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

2

such as a disgruntled employee planting a logic bomb to disrupt systems, stealing

intellectual property for personal gain, etc. The diversity of insider attack increases

the complexity of insider threat detection. The last but not the least, insider threat

often performed by insiders during working hours, causing insider’s anomalous be-

haviors scattered in large amounts of normal working behaviors. Therefore, it increas-

es the difficulty of insider threat detection.

The key of insider threat detection is to model a user’s normal behavior to detect

anomalous behavior. Much work has been proposed to address the issue [1-2]. They

aggregate all the actions of a user in one day to represent the user’s behavior in the

same day. However, the anomalous behavior happening within one day may be

missed. For example, a user logs on to his assigned computer after hours and uploads

data to wikileaks.org. We argue that using user action sequences for each user is very

important in detecting insider threat.

To address this problem, we propose a novel insider threat detection method to de-

tect whether user behavior is normal or anomalous. Specifically, it is not efficient that

we directly use the LSTM to classify the user action sequence, because the output of

the LSTM only contains a single bit of information for every sequence. Instead, we

use the trained LSTM to predict next user action, and use a series of hidden states of

the LSTM model to generate a fixed-size feature matrix that is given to the CNN clas-

sifier. The LSTM can better capture the long term temporal dependencies on user

action sequence, because hidden units of the LSTM potentially record temporal be-

havior patterns.

To summarize, in this paper, we make the following contributions:

(1) We present a novel insider threat detection method with LSTM and CNN based

on user behavior.

(2) We use the LSTM to learn the language of user behavior through user actions

and extract abstracted temporal features which are the input of the CNN classifier.

(3) Experimental results on a public dataset of insider threats show that our pro-

posal can successfully detect insider threat and we obtained AUC = 0.9449 in best

case.

The rest of this paper is organized as follows. We summarize the related work in

Section 2, and give a detailed description of our insider threat detection method in

Section 3. Implementation details and experimental results for this work are shown in

Section 4. Finally, we conclude the paper’s work in Section 5.

2 Related Work

Related work falls into two main categories, insider threat detection and deep neural

network.

Insider Threat Detection: The problem of insider threat detection is usually

framed as an anomaly detection task. A comprehensive and structured overview of

anomaly detection techniques was provided by Chandola et al. [3]. They defined that

the purpose of anomaly detection is finding patterns in data which did not conform to

the expected behavior. The key problem of anomaly detection is how to model a us-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

3

er’s normal behavior profile. A lot of research work has been proposed to develop

anomaly detection, especially machine learning.

Early work on anomaly detection based on user command proposed by Davison et

al. [4] and Lane et al. [5]. They examine user command sequences and compute the

match degree of a current command pattern with the historical command pattern to

classify user behavior as normal or anomalous.

After that, anomaly detection begins to take advantage of machine learning tech-

niques, such as Naive Bayes [6], Eigen Co-occurrence Matrix (ECM) [7], One-Class

Support Vector Machine (OC-SVM) [8] and Hidden Markov [9]. Schonlau et al.

compared the performance of six masquerade-detection algorithms on the data set of

“truncated” UNIX shell commands for 70 users and experimental results revealed that

no single method completely dominated any other. Maxion et al. [6] applied the Naive

Bayes classifier to the same data set [17], inspired by Naive Bayes text classification.

They also provided a thorough and detailed investigation of classification errors of the

classifier in [18]. Oka et al. [7] argued that the causal relationship embedded in se-

quences of events should be considered when modeling a user’s profile. They devel-

oped the layered networks approach based on the Eigen Co-occurrence Matrix (ECM)

and extracted the causal relationships embedded in sequences of commands to sup-

plement user behavior model. Salem et al. [19] evaluated the accuracy performance of

the nine methods mentioned above using the Schonlau dataset, but the results revealed

that their detection rates were not high. Szymanski et al. [8] used an OC-SVM classi-

fier for insider threat detection. However, the approach needed mixing user data and it

was hard to implement in a real-world setting. Rashid et al. [9] proposed an approach

to insider threat detection by the use of Hidden Markov. They used Hidden Markov to

model user’s normal behavior via user actions and regarded deviations from the nor-

mal behavior as anomalous behavior. The effectiveness of the method is highly im-

pacted by the number of the states. However, the computational cost of the Hidden

Markov model increases as the number of states increases.

The works mentioned above make use of machine learning techniques to build a

classifier. On one hand, machine learning requires “feature engineering” which is

time-consuming and difficult. On the other hand, the classifier is too simple, resulting

in a low detection rate.

Deep Neural Network: Recently, deep neural network that can automatically

learn powerful features has led to new ideas for anomaly detection. Tang et al. [10]

applied the deep learning methodology to build up an anomaly detection system, but

the experimental results in the testing phase were not good enough. Veerama-

chananeni et al. [11] used a neural network auto-encoder to detect insider threat. They

aggregated a number of numeric features over a time window and fed these features

to an ensemble of anomaly detection methods: Principal Component Analysis, neural

networks, and a probabilistic model. However, individual user activity was not explic-

itly modeled over time. Tuor et al. [2] proposed a deep learning approach to detect

anomalous network activity from system logs. They trained Recurrent Neural Net-

works (RNNs) to recognize characteristic of each user on a network and concurrently

assessed whether user behavior is normal or anomalous. While this method aggre-

gates features over one day for individual users, it is possible to miss anomalous be-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

4

havior happening within one day. Instead, our model is trained using user action se-

quences with DNN. The actions that a user takes over a period of time on a system

can be modeled as a sequence. The action sequences of user’s normal behavior are

seen often or on a usual basis. Observed action sequences deviated from those normal

action sequences are regarded as anomalous behavior. Therefore, our model can de-

tect anomalous behavior through user actions and even can detect anomalous behavior

happening within one day.

3 Proposed method

In this section, we introduce the details of our insider threat detection method. The

proposal applies DNN in two stages. The first stage extracts the abstracted temporal

features of user behavior by the LSTM and outputs feature vectors. Then the feature

vectors are transformed into fixed-size feature matrices. In the second stage, these

fixed-size feature matrices are fed to the CNN to classify them as normal or anomaly.

Trained

LSTM

Trained

CNN

Feature extract
Fixed-size feature

matrices Classification

User k

(k=1,…,K)

K users

For each user

Sequences of user actions

（Variable length sequences）

A sequence of user actions

User k

(k=1,…,K)

Day 1: logon,web visit,email,…

Day 2: logon,web visit,email,…

Day J: logon,web visit,file,…

LSTM CNN

Training the

LSTM

model

Training the

CNN

model

Fixed-size

feature matrices

The probability

of anomalous

behaviour

Training

Testing

Day j: logon,web visit,file,email,…

 …

Fig. 1. Overview of proposed method

3.1 Overview

The overview of our insider threat detection method is shown in Fig. 1. The individu-

al action (e.g., logging onto an assigned computer afterhours) represents the operation

of a user; actions taken by a user in one day represent user behavior. Similar to natural

language modeling, an action is corresponding to a word and an action sequence is

corresponding to a sentence. For that reason, we attempt to learn the language of user

behavior as a new method for detecting insider threat. The LSTM is used to extract

the features of user behavior. The CNN uses these features to find anomalous behav-

ior.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

5

Let * + be the set of K users. For a user (), we can

obtain his action sequences over days, 0 1, where (

) is a vector which denotes the action sequence on the day indexed by . In the

training phase, we first obtain an action sequence that user has performed

within the day indexed by . Second, the action sequence is then fed into the

LSTM and the LSTM is trained to construct a feature extractor to obtain the abstract-

ed feature vectors in the deep layer. Third, the feature vectors are transformed into a

fixed-size matrix . The fixed-size feature matrix potentially contains various

abstracted temporal features that represent user behavior. Finally, we use these fixed-

size matrices annotated with normal or anomalous to train the CNN. In the testing

phase, we evaluate the approach with the trained LSTM and the trained CNN. The

detail of each step is described in the following subsections.

x1

LSTM Layer 1

LSTM Layer 2

LSTM Layer 3

y1

x2

x2

LSTM Layer 1

LSTM Layer 2

LSTM Layer 3

y2

x3

……

……

……

xL

LSTM Layer 1

LSTM Layer 2

LSTM Layer 3

yL

$

Action

Embedding

Prediction

Next actionForward

Dropout

Backward

3,0
h

2,0
h

1,0
h

3,1
h

2,1
h

1,1
h

3, 1
h

L 

1 0,1
e h

2 0,2
e h

0,
e h

L L


2, 1
h

L 

1, 1
h

L 

A user action sequence

……

Fig. 2. Flow of LSTM training

3.2 Training LSTM for Feature Extraction

Based on the user action sequences, we construct a feature extractor which can auto-

matically extract abstracted temporal features from each input action sequence. The

LSTM consists of an input layer, an embedding layer, three LSTM layers, and an

output layer. The flow of the LSTM is shown in Fig. 2.

For user on the day indexed by , let be the length of the action sequence,

 ,

-.

 () represents an individual action at time

instance .

 () denotes the hidden state of hidden layer at

time instance .
 () denotes the output at time instance . Here we use

one-hot encoding to embed the input

 as a vector
 (). The one-hot

encoding is performed as follows:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

6

1. Creating a dictionary in which IDs and actions are associated with each other, such

as logging on an assigned PC after hours is denoted as 1, logging off an assigned

PC after hours is denoted as 2, etc.

2. Converting actions to one-hot vectors, which is 1 at the action ID position, and 0

elsewhere.

The LSTM with three hidden layers () is described by the following equa-

tions:

 (
()

()

) (1)

 .
()

()

/ (2)

 (
()

()

) (3)

 tanh .

()

()

/ (4)

⊙

⊙

 (5)

⊙ tanh(

) (6)

Where

, and

,

 are set to zero vector for all . () is

the sigmoid function and ⊙ denotes element-wise multiplication. Vector

 is a

hidden representation, vector

 decides which values to update, vector

 decides

which things to forget, vector

 decides what to be outputted. 24 weight matrices

() and 12 bias vectors () are learned parameters.

The LSTM is repeatedly trained using user action sequences. First, we take an in-

put series of user as a vector [

, ,

]. Second, the embedding

layer converts the series of actions to one-hot vectors [

, ,

].

Third, we sequentially input each one-hot vector

 to the LSTM and the LSTM

outputs prediction

. Finally, we calculate the cross-entropy loss function by com-

paring prediction

 with answer

.

In training phase, we apply Dropout [12] to the LSTM in a way that can reduce

overfitting. The dropout operator is only applied to the non-recurrent connections.

One epoch means that all training user action sequences are inputted to the LSTM.

The order of user action sequences is randomized in every epoch. The LSTM training

is executed for multiple epochs. After training, we obtain the trained feature extractor.

Then we extract the hidden state of the last hidden layer (the third layer in Fig. 2) for

every input and obtain a series of feature vectors [

, ,

].

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

7

3.3 Fixed-size Feature Representations

As the designed classifier accepts fixed-size representations and the number of actions

differs between user action sequences, we need to construct a fixed-size feature ma-

trix for the series of feature vectors which is provided as input of the CNN.

To deal with this, we decided on a maximal length and a minimal length

for any action sequence for user . We ignore all sequences whose length are shorter

than . For all sequences with more than steps, we keep only the first

actions. For all sequences whose length is between and , we pad them with

zeros until their lengths reach . By this way, we can convert the series of feature

vectors [

, ,

] into a fixed-size feature matrix of dimen-

sions , where is the dimension of the last hidden layer. We map each

element of to the [0,1] space by sigmoid function. Finally, we obtain the fixed-

size feature matrix of dimensions .

Input Conv1 Pool1 Conv2 Pool2
Fully

Connection

Convolution

Pooling

Full Connection

Output

V ku

N ku
1W

1H

1W

2

1H

2

2W

2H

2W

2

2H

2

Fig. 3. Structure of the CNN

3.4 Training CNN for Detecting Insider Threat

The final component of our approach is the classification stage. We use the CNN to

classify the fixed-size feature matrices of user behavior into normal behavior and

anomalous behavior. The CNN consists of an input layer, two convolution-pooling

layers, a fully-connected layer, and an output layer. For user , the dimension of the

input layer is and the dimension of the output layer is two. Fig. 3 shows

the structure of the CNN.

We first train the CNN by using fixed-size feature matrices annotated with normal

or anomaly. Also the softmax function is applied to the output of the CNN. After

training, we use the trained CNN to calculate anomalous probability of a user action

sequence.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

8

Table 1. Enumeration of User Actions

Time Computer Activities ID Action Description

In-
hourAction
(8am and
5pm) or
After-

hourAction
(5pm and

8am)

On an
assigned
PC or an

unas-
signed

PC

Logon/Logoff
activity

1 Logon User logged on a computer

2 Logoff User logged on a computer

File
activity

3
Copy exe

file
A exe file copy to a removable
media device

4
Copy doc

file
A doc file copy to a removable
media device

5
Copy pdf

file
A pdf file copy to a removable
media device

6 Copy txt file
A txt file copy to a removable
media device

7 Copy jpg file
A jpg file copy to a removable
media device

8 Copy zip file
A zip file copy to a removable
media device

HTTP activity

9
Neutral
website

User visited a neutral website

10
Hacktivist
website

User visited a hacktivist website

11
CloudStor-

age website
User visited a cloudstorage
website

12
JobHunting

website
User visited a jobhunting web-
site

Email
activity

13
Internal

email
All recipients are company
email addresses

14
External

email
There is an external address

Device
activity

15 Connect
User inserted a removable
media device

16 Disconnect
User removed a removable
media device

4 Experiments

This section reports the experimental validation of the proposed method. We apply

our method to the CMU-CERT insider threat dataset [13], which provides a synthetic

dataset describing a user’s computer based activity. The dataset consists of infor-

mation on several different activities over a period of 17 months. Next, we first de-

scribe details of the dataset and evaluation method. Then we present the experimental

results of our approach.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

9

4.1 Dataset

We perform experiments on the CERT insider threat dataset V4.2, because it contains

more instances of insider threats compared to the other version of datasets. The da-

taset captures the 17 months of activity logs of the 1000 users (with 70 insiders) in an

organization, which consists of five different types of activities: logon/logoff, email,

device, file and http. Each log line is parsed to obtain details like a timestamp, user

ID, PC ID, action details etc. We choose a comprehensive set of 64 actions over the

five types of activities and build 1000 user specific profiles based on user action se-

quences. An example of a user action is visiting a job-hunting website between the

hours of 8:00 am and 5:00 pm on an assigned computer. The enumeration of user

actions is listed in Table 1.

Over the course of 17 months, 1000 users generate 32,770,227 log lines. Among

these are 7323 anomalous activity instances manually injected by domain expert,

representing three insider threat scenarios taking place.

We split the dataset into two subsets: training and testing. The former subset

(~70% of the data) is used for model selection and hyper-parameter tuning. The latter

subset (~30% of the data) is used for evaluating the performance of the model. Our

classifications are made at the granularity of user-day. One note is that we removed

the weekends of the data when we classify at the granularity of user-day, because the

user behavior is qualitatively different for weekdays and weekends.

Table 2. Parameters of the LSTM

Model
Dimension of three

hidden layers
Mini-batch size Epoch num

LSTM1 60 20 10

LSTM2 40 20 10

LSTM3 20 20 10

Table 3. Parameters of the CNN

Model Conv1 Conv2 Activate function
Mini-batch

size
Epoch num

CNN1 32(4) 64(4) tanh 20 500

CNN2 32(5) 64(5) tanh 20 500

CNN3 32(6) 64(6) tanh 20 500

CNN4 32(4) 64(4) relu 20 500

4.2 Evaluation Method

The dataset used for experiment is unbalanced, so we choose the Receiver Operating

Characteristics Curves (ROC) and Area-Under-Curve (AUC) measure for evaluating

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

10

the proposed method. On one hand, we can visualize the relation between TPR and

FPR of a classifier. On the other hand, the accuracy with two or more classifiers can

be compared.

(a) ROC curves for CNN1 (b) ROC curves for CNN2

(c) ROC curves for CNN3 (d) ROC curves for CNN4

Fig. 4. ROC curves for CNNs

4.3 Results

To compare the performance of the model with different parameters, we train our

model with several parameters. When setting the parameters of the LSTM, we refer

the setting of [14] which uses the LSTM in language modeling. In addition, the

LSTM is trained using the ADAM [15] variant of gradient descent. The parameter

settings of the LSTM are shown in Table 2.

The parameters of the CNN were set by referring the setting of LeNet [16], which

is used for recognizing hand written digit. Let a(b) denotes the number of filters (the

shape of each filter) per convolutional layer. Max-pooling reduces the size of the in-

put into 1/2 with stride of 2. The parameter settings of the CNN are shown in Table 3.

We evaluated the ROC curves for each of these CNNs, and later we compare the

best performing CNN against the logistic regression classifier-based architectures (see

Fig. 5). Fig. 4(a), Fig. 4(b), Fig. 4(c) and Fig. 4(d) show the ROC curves when CNN1,

CNN2, CNN3 and CNN4, respectively, are used for classification. We can see that

the different parameter settings differ only slightly. The performance of relu activa-

tion function is similar to the tanh activation function, using the same parameter set-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

11

tings. The LSTM2 with CNN3 provides better result than the other CNNs and gets the

best result AUC = 0.9449.

Fig. 5. ROC curves for CNN3 and Logistic Regression

Fig. 5 compares the ROC curves of the best performing CNN3 plus the logistic re-

gression classifier-based architectures. The ROC results for the CNN classifier based

architectures are better than the Logistic Regression version with the same language

model (LSTM2).

5 Conclusion

In this paper, we proposed the insider threat detection method with deep neural net-

work. Because insider threat manifest in various forms, it is not practical to explicitly

model it. We frame insider threat detection as an anomaly detection task and use

anomalous behavior of a user as indicative of insider threat. The LSTM extracts user

behavior features from sequences of user actions and generates fixed-size feature

matrices. The CNN classifies fixed-size feature matrices as normal or anomaly. We

evaluated the proposed method using the CERT Insider Threat dataset V4.2. Experi-

mental results show that our method can successfully detect insider threat and we

obtained AUC = 0.9449 in best case.

Acknowledgement

This work was partly supported by the National Key R&D Program of China under

Grant No.2016YFB0800300, Xinjiang Uygur Autonomous Region Science and

Technology Project under Grant No.2016A030007-4, the National Natural Science

Foundation of China under grant No. 61602466.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

12

References

1. Gavai, G., Sricharan, K., Gunning, D., Hanley, J., Singhal, M., & Rolleston, R.: Super-

vised and Unsupervised methods to detect Insider Threat from Enterprise Social and

Online Activity Data. JoWUA, 6(4), 47-63(2015).

2. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., & Robinson, S.: Deep Learning for Un-

supervised Insider Threat Detection in Structured Cybersecurity Data Streams. arXiv pre-

print arXiv:1710.00811(2017).

3. Chandola, V., Banerjee, A., & Kumar, V.: Anomaly detection: A survey. ACM computing

surveys (CSUR), 41(3), 1-58(2009).

4. B. D. Davison and H. Hirsh.: Predicting sequences of user actions. AAAI/ICML 1998

Workshop on Predicting the Future: AI Approaches to Time-Series Analysis, pp. 5–12

(1998).

5. T. Lane and C. E. Brodley.: Sequence matching and learning in anomaly detection for

computer security. In AAAI Workshop: AI Approaches to Fraud Detection and Risk Man-

agement, pp.43–49(1997).

6. R. A. Maxion and T. N. Townsend.: Masquerade detection using truncated command lines.

In DSN ’02 Proceedings of the 2002 International Conference on Dependable Systems and

Networks, pp. 219–228(2002).

7. Oka, M., Oyama, Y., & Kato, K.: Eigen co-occurrence matrix method for masquerade de-

tection, In Publications of the Japan Society for Software Science and Technology(2004).

8. Szymanski B K, Zhang Y.: Recursive Data Mining for Masquerade Detection and Author

Identification. Information Assurance Workshop, pp. 424-431(2004).

9. Rashid, T., Agrafiotis, I., & Nurse, J. R.: A New Take on Detecting Insider Threats: Ex-

ploring the use of Hidden Markov Models. In Proceedings of the 2016 International Work-

shop on Managing Insider Security Threats, pp. 47-56(2016).

10. Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M.: Deep Learning

Approach for Network Intrusion Detection in Software Defined Networking. In Wireless

Networks and Mobile Communications (WINCOM), pp. 258-263(2016).

11. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., & Li, K.: AI2: Training a big

data machine to defend. In Big Data Security on Cloud, IEEE International Conference on

HPSC, and IEEE International Conference on IDS, pp. 49-54(2016).

12. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. Im-

proving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580(2012).

13. Glasser, J., & Lindauer, B.: Bridging the gap: A pragmatic approach to generating insider

threat data. In Security and Privacy Workshops (SPW), pp. 98-104(2013).

14. Zaremba, W., Sutskever, I., & Vinyals, O.: Recurrent neural network regularization. arXiv

preprint arXiv:1409.2329(2014).

15. Kingma, D., & Ba, J.: Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980(2014).

16. Theano Development Team, “Convolutional Neural Networks(LeNet)”,

http://deeplearning.net/tutorial/lenet.html.

17. Maxion R A, Townsend T N, Masquerade Detection Using Truncated Command Lines. In-

ternational Conference on Dependable Systems and Networks, pp. 219-228(2002).

18. Maxion R A, Townsend T N, Masquerade Detection Augmented with Error Analysis.

IEEE Transactions on Reliability, 53(1), 124-147(2004).

19. Salem, M. B., Hershkop, S., & Stolfo, S. J.: A survey of insider attack detection research.

Insider Attack and Cyber Security, pp. 69-90(2008).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_4

https://dx.doi.org/10.1007/978-3-319-93698-7_4

