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Abstract. Automated Planning has achieved a significant step forward
in the last decade, and many advanced planning engines have been intro-
duced. Nowadays, increases in computational power are mostly achieved
through hardware parallelisation. In view of the increasing availability of
multicore machines and of the intrinsic complexity of designing parallel
algorithms, a natural exploitation of parallelism is to combine existing
sequential planning engines into parallel portfolios.
In this work, we introduce three techniques for an automatic configura-
tion of static parallel portfolios of planning engines. The aim of gener-
ated portfolios is to provide a good tradeoff performance between cover-
age and runtime, on previously unseen problems. Our empirical results
demonstrate that our techniques for configuring parallel portfolios com-
bine strengths of planning engines, and fully exploit multicore machines.

Keywords: Automated Planning · Parallel Portfolio · Portfolio Config-
uration.

1 Introduction

Automated planning is one of the most prominent Artificial Intelligence (AI)
challenges; it has been studied extensively for several decades and has led to a
large number of real-world applications. AI planning deals with finding a par-
tially or totally ordered sequence of actions to transform the environment from
an initial state to a desired goal state [6]. In recent years, also fostered by Inter-
national Planning Competitions (IPCs) there has been considerable progress in
developing powerful domain-independent planning engines. However, as in many
different areas of AI, none of these systems clearly dominates all others in terms
of performance over a broad range of planning domains. This observation moti-
vates the design and exploitation of portfolio approaches in planning. In particu-
lar, much work has been done in the area of sequential portfolios, where selected
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planning engines are executed sequentially on a single CPU. Well-known exam-
ples include approaches such as PbP [5], Cedalion [18], and MIPlan [14], which
are able to configure static sequential portfolios, and systems like IBaCoP [2],
which instead aim at configuring instance-specific portfolios. Static approaches
configure portfolios once, and then re-use the same configuration for any testing
instance. Instead, instance-specific approaches can configure a different portfo-
lio for each testing instance, according to some information extracted from the
instance to be solved.

Nowadays, increases in computational power are mostly achieved through
hardware parallelisation; as a result, multicore machines are cheap and widely
available. Consequently, parallel solvers are gaining more and more importance,
also because they can tackle more computationally demanding problems. How-
ever, the manual construction of parallel planning engines is a challenging task,
and it often requires a fundamental redesign of existing sequential approaches in
order to fully exploit the computational power given by the parallel hardware [7].
In fact, results from IPC 2014 [19] confirm that state-of-the-art parallel planners
are not able to outperform standard sequential planning engines. This is also due
to the intrinsic complexity of designing parallel algorithms. One promising ap-
proach for exploiting the computational power provided by multicore machines
is the design of parallel portfolios of engines, i.e. a set of sequential planning en-
gines that run in parallel for solving a given planning problem. Notably, parallel
portfolios have been recently introduced in other areas of AI, such as SAT and
ASP [12].

In this work, we consider an automatic construction of static domain-independent
parallel portfolios. In particular, we introduce three new methodologies: one ap-
proach that schedules a single planning engine per available core, and two ap-
proaches that are able to allocate a sequence of different engines per each core.
Portfolios are configured in order to be robust, i.e., they aim at providing good
tradeoff performance between runtime and coverage. The designed techniques
are able to configure parallel portfolios for any given number of processing units
–here we focus on 2 and 4 cores, which correspond to widely available machines
currently on the market– and for different cutoff times. Our extensive empir-
ical analysis demonstrates the usefulness and robustness of generated parallel
portfolios.

2 Configuration of Robust Parallel Portfolios

Automated Planning is about finding a sequence of actions, a plan, that trans-
forms the environment from a given initial state to some goal state [6]. An action
is specified via a precondition, i.e., what must hold prior its application, and ef-
fects, i.e., how the environment is transformed after its application. A planning
engine accepts a planning problem description on the input and returns a plan
(if it exists) on the output. In our case, we consider planning engines as “back-
boxes”, i.e., we do not investigate the techniques they exploit, but we consider
their performance, i.e., whether they solve the problem and how fast.
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Every approach requires as an input: (i) a set of homogeneous CPU cores U ,
where |U | = k, (ii) the maximum available runtime for the configured portfolio T ,
(iii) a set of planners P , (iv) a set of training planning problem instances Π, and
(v) measures of performance of planners on the training instances per : P ×Π →
R

+. Planners’ performance are measured in terms of Penalised Average Runtime
(PAR10) score. PAR10 is a metric usually exploited in machine learning and
algorithm configuration techniques. This metric trades off coverage and runtime
for solved problems: if a planner p solves a training instance π in time t ≤ T ,
then per(p, π) = t, otherwise per(p, π) = 10T .

Portfolios are configured for minimising the overall PAR10 score, and are
defined by: (i) the selected planning engines; (ii) the core on which each planner
will be run, and (iii) the time interval allocated to each planning engine. More
formally, we define a parallel portfolio of planning engines C as a set of tuples in
the form of 〈p, u, ts, te〉, where p is an engine, u is a core, ts and te, where ts < te
and te ≤ T , determine the time interval of p’s execution on u. Moreover, for
each u, there are no tuples 〈p, u, ts, te〉 and 〈p′, u, t′s, t

′
e〉 such that ts ≤ t′s < te or

ts < t′e ≤ te – in other words, intervals in which planners run on particular cores
do not overlap. We say that a parallel portfolio is complete if and only if for each
p ∈ P , u ∈ U and t ∈ [0;T ] there exists 〈p, u, ts, te〉 ∈ C such that ts ≤ t ≤ te.
Otherwise the portfolio is incomplete, i.e, some cores might be unallocated for
some time intervals. Moreover, we assume that a planning engine can be used
at most once, i.e., for each p there exists at most one tuple 〈p, u, ts, te〉 ∈ C.

The first approach, called Overall, selects a single planning engine per avail-
able core. It iteratively allocates engines in order to maximise the improvement
of the PAR10 score of the portfolio. In an x-th step (from x = 1 to x = k, where
k is the number of cores), where C ′ = {〈p1, u1, 0, T 〉, . . . , 〈px−1, ux−1, 0, T 〉} is
an incomplete parallel portfolio and P ′ is a set of unallocated engines, we select
px ∈ P ′ such that for each p′ ∈ P ′ it is the case that∑

π∈Π min(per(p1, π), . . . , per(px−1, π), per(px, π))
≤

∑
π∈Π min(per(p1, π), . . . , per(px−1, π), per(p

′, π)).
Then we update C ′ = C ′∪{〈px, ux, 0, T 〉} and P ′ = P ′\{px}. If it is not possible
to further improve the PAR10 score of C ′, the portfolio is completed by allocat-
ing planning engines with the best PAR10 score that are not yet members of the
portfolio to remaining available cores. Ties are broken by considering problem
coverage (i.e., the number of solved problem instances), and then randomly.

Our next two approaches, called Iterative-Single and Iterative-All, are in-
spired by the hill-climbing method introduced in Fast Downward Stone Soup [9].
Notably, Stone Soup focused on combining planning techniques into a sequential
portfolio that maximises the quality of generated solutions. It is well-known that
for portfolios aiming at maximising the quality of solutions, the order in which
planning engines are executed is irrelevant, however, engines’ order is of pivotal
importance when runtime is considered in the optimisation metric [20]. In our
case, the portfolio has to execute engines that are more likely to quickly find
solutions earlier.
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Algorithm 1 The Iterative-Single algorithm. Iterative-All can be obtained by
swapping the For loops (Lines 2 and 3) and by replacing Cui for C in Lines 7,
11 and 13.
Input: P ,k,q,τ ,per
Output: C

1: C = 〈〉; P ′ = P

2: for i = 1 to k do ⊲ Allocating cores
3: for j = 0 to q − 1 do ⊲ Allocating time slots
4: Cext = ∅
5: for all 〈p, ui, ts, te〉 ∈ Cui do ⊲ Extending the execution time of p on ui

6: C′

ext = (C \ {〈p′, ui, t
′

s, t
′

e〉 | 〈p′, ui, t
′

s, t
′

e〉 ∈ C ∧ t′s ≥ ts}) ∪ {〈p, ui, ts, te + τ〉} ∪
{〈p′, ui, t

′

s + τ, t′e + τ〉 | 〈p′, ui, t
′

s, t
′

e〉 ∈ C ∧ t′s > ts}

7: if
∑

π∈Π
per(C

′ui
ext, π) <

∑
π∈Π

per(C
ui
ext, π)

8: Cext = C′

ext

9: end if

10: end for

11: p′ = argminp′∈P ′

∑
π∈Π

per(Cui ∪ {〈p′, ui, j ∗ τ, (j + 1) ∗ τ〉}, π)

12: Cnew = C ∪ {〈p′, ui, j ∗ τ, (j + 1) ∗ τ〉} ⊲ Allocating a new engine on ui

13: if
∑

π∈Π
per(C

ui
new, π) <

∑
π∈Π

per(C
ui
ext, π)

14: P ′ = P ′ \ {p′} ⊲ Removing the recently allocated engine from the available engines
set

15: C = Cnew

16: else

17: C = Cext

18: end if

19: end for

20: end for

To introduce Iterative-Single and Iterative-All we extend our terminology
as follows. The time interval [0;T ] is evenly split into q ∈ N subintervals of
length τ (i.e, T = q ∗ τ). Let Cu = {〈p, u, ts, te〉 | u ∈ U, 〈p, u, ts, te〉 ∈ C}
be a sequential portfolio of planning engines on a core u. We extend the per
function for tuples representing the elements of parallel portfolios in such a way
that per(〈p, u, ts, te〉, π) = ts + t if p solves π in time t ≤ te − ts, otherwise
per(〈p, u, ts, te〉, π) = 10T . Then, we extend per for a parallel portfolio C such
that per(C, π) = min〈p,u,ts,te〉∈C per(〈p, u, ts, te〉, π).

The Iterative-Single and Iterative-All algorithms are described in Algorithm 1.
The difference between Iterative-Single and Iterative-All is that the former allo-
cates engines core by core while the latter time slot by time slot. In an interme-
diate step, i.e., considering i-th core and (j+1)-st time slot, we either extend the
time interval of the planning engine allocated on the i-th core by τ , or allocate
a new engine on the i-th core and (j + 1)-st time slot depending what reduces
the per value for the current (incomplete) portfolio the most (only the current
core is considered for Iterative-Single). As formally described in Line 6, extend-
ing the time interval of 〈p, ui, ts, te〉 by τ is done by unallocating all planning
engines p′ allocated to ui with start time greater or equal ts (i.e., including p),
then by extending the time interval of p, i.e., allocating 〈p, ui, ts, te + τ〉, and
then, finally, re-inserting the rest of the engines (p′) on timeslots shifted by τ .
It should be noted that in an intermediate step of the j for loop (Lines 3–19),
planning engines can be allocated only on first j+1 slots, i.e., te ≤ (j+1)∗τ for
any tuple 〈p, ui, ts, te〉 ∈ C (for the core ui in the Iterative-Single algorithm, or
any core for the Iterative-All algorithm). Consequently, there is no engine such
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Table 1. PAR10, coverage, and IPC score achieved by the generated portfolios and
considered planning engines running on the 140 testing benchmark instances for 300
wallclock-time seconds (left) and 300 CPU-time seconds (right). VBS stands for the
Virtual Best Solver, and grey rows indicate portfolio-based planners. Systems are listed
in the order of increasing PAR10. 2 and 4 indicate the number of cores exploited by
the portfolio.

Wallclock Time CPU-time

Planner PAR10 Cov. IPC Planner PAR10 Cov. IPC

VBS 554.9 82.1 115.0 VBS 554.9 82.1 115.0

Iterative-All-4 678.2 79.3 90.9 Iterative-All-4 1358.7 55.0 66.1
Iterative-Single-4 725.5 77.1 84.6 Iterative-Single-4 1421.5 52.9 59.4
Overall-4 1115.9 63.6 80.4 Iterative-All-2 1426.8 52.9 62.5
Iterative-Single-2 1194.4 61.4 61.3 Iterative-Single-2 1491.2 50.7 52.0
Iterative-All-2 1228.4 60.0 68.0 Super-Naive-4 1677.4 44.3 60.0
Super-Naive-4 1431.0 52.9 60.4 Overall-4 1677.4 44.3 60.0
Overall-2 1569.7 48.6 41.8 Mpc 1797.7 40.7 40.4
Mpc 1797.7 40.7 40.4 Jasper 1871.0 38.6 24.8
Super-Naive-2 1837.3 39.3 42.2 Overall-2 1917.0 36.4 41.2
Jasper 1871.0 38.6 24.8 Mercury 1957.2 35.7 22.5
Mercury 1957.2 35.7 22.5 Freelunch 2007.4 33.6 34.3
Freelunch 2007.4 33.6 34.3 Probe 2029.7 32.9 30.6
Probe 2029.7 32.9 30.6 Bfs 2172.2 27.9 22.9
Bfs 2172.2 27.9 22.9 Lama 2107.8 30.7 18.4
Lama 2107.8 30.7 18.4 Yahsp3 2277.2 24.3 33.3
Yahsp3 2277.2 24.3 33.3 Super-Naive-2 2297.5 23.6 32.8
LPG 2343.4 22.1 23.8 LPG 2343.4 22.1 23.8
FF 2682.7 10.7 9.7 FF 2682.7 10.7 9.7

that its te > q ∗ τ (i.e., no planner is scheduled “outside” the given time inter-
val) after Algorithm 1 terminates. In a nutshell, the Iterative-Single approach
configures a different portfolio for each core, without considering other available
cores; Iterative-All instead is able to reason upon all the available cores. There-
fore, in Iterative-Single, the portfolio configured for a given core does not exploit
any information about the portfolios running on the other processing units, or
the number of available cores. This has been done for fostering the inclusion of
(potentially many) different planners, hence maximising diversity of portfolios.
On the contrary, Iterative-All has a complete overview of the performance of the
portfolio across all the available cores.

3 Experimental Analysis

We selected 10 planning engines, based on their performance in the Agile track
of IPC 2014 and in previous IPCs, that accommodate very different planning
techniques: Lama [16], LPG [4], FF [10], Bfs [21], Freelunch [21], Jasper [21],
Madagascar-C (Mpc) [21], Mercury [21], Probe [21], and Yahsp3 [21].

Experiments were performed on a quad-core 3.0 Ghz CPU, with 4GB of RAM
available for each core. We especially considered 2 and 4 cores to emphasise the
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Table 2. Planning engines included in the portfolios configured by the proposed tech-
niques. � indicates that the engine is running on a core for the maximum available
time, otherwise allocated CPU-time seconds are shown. SN, O, IS, and IA stand respec-
tively for Super-Naive, Overall, Iterative-Single, and Iterative-All. 2 and 4 indicates the
number of cores on which the portfolio runs.

SN2 SN4 O2 O4 IS2 IS4 IA2 IA4

Bfs 150 150 200 200
FF 150
Freelunch 150 100
Jasper � 150 250
Lama 150 50 100
LPG � � 150 150 100 150
Mercury � � � � 50 50 50 50
Mpc � 50 50 50 50
Probe � 150 150 100 250
Yahsp3 � � � 50 50 50 50

ability of our approaches to configure portfolios on limited resources. In order
to account for randomised algorithms and noise, results provided are averaged
across three runs. Where possible, seeds of planning engines have been fixed.
Planning engines (and configured portfolios) are stopped after the first solution
is found. Unless differently specified, as in the Agile track of IPC 2014, the cutoff
time (T ) for each instance was 300 wallclock-time seconds. Minimum time slot
(τ) was set to 50 seconds according to the results of our preliminary experiments.

As training instances, we included all the problems used in the deterministic
and learning tracks (testing problems) of IPC 2008 and IPC 2011. Repeated
problems were removed. In the case of repeated domains, only the most recent
benchmarks were considered for training. In total, more than 600 instances are
included in the training set.

For testing purposes we considered instances from the domains used in the
Agile track of IPC 2014, that were not included in the training set. This was
done for assessing the robustness of generated portfolios, i.e. their ability in
generalising on different domains and problems. In total, 7 domains where used
for testing: Cave Diving, Child-Snack, CityCar, GED, Hiking, Maintenance, and
Tetris.

Performance is measured in terms of IPC score, PAR10 and coverage. We
defined IPC score as in the Agile track of IPC 2014: for a planning engine C
and a problem p, Score(C, p) is 0 if p is unsolved, and 1/(1 + log10(Tp(C)/T

∗
p ))

otherwise (where T ∗
p is the minimum time required by compared systems to solve

the problem). The IPC score on a set of problems is given by the sum of the
scores achieved on each considered instance.

As a baseline for evaluating the performance of introduced parallel portfolios,
we consider a technique that allocates a single planning engine to each available
core. Engines are selected merely according to PAR10 on training instances. This
approach is called –pragmatically– Super-Naive.
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Table 1 shows the PAR10, coverage and IPC scores of all the portfolios, plan-
ning engines, and the Virtual Best Solver (VBS) on the 140 testing instances
when run for 300 wallclock-time seconds (left) and 300 CPU-time seconds (right).
The VBS shows the performance of a (virtual) oracle which always selects the
best (fastest) engine for the given problem. This provides the upper bound of
performance achievable by combining considered solvers. By taking into account
the performance gap between the VBS and the basic planners, it becomes appar-
ent that if considered planning engines are substantially complementary, then
configuring portfolios can be a fruitful way for improving overall performance.

In terms of performance boost given by exploiting parallel portfolios on 2 or
4 cores, results shown in Table 1 clearly indicate that most of the proposed con-
figuration approaches outperform the best planning engine. Interestingly, even
exploiting the Iterative approach for configuring a sequential portfolio running
on a single core (notice that Iterative-Single and Iterative-All configure the same
portfolio) results in better performance than Super-Naive and Overall on 2 cores.
Remarkably, coverage and PAR10 performance achieved by the Iterative-All
portfolio configured for exploiting 4 cores, are close to those achieved by the
VBS. This confirms that the proposed configuration technique is able to effec-
tively combine engines into high-performance portfolios. It comes as no surprise
that the only portfolio that shows performance worse than the best single solver
is the Super-Naive. In order to investigate cases in which the number of cores is
similar to the number of available planning engines, we configured parallel port-
folios to be run on 8 cores. Under such circumstances, Overall and Iterative-All
approaches –but even a random selection– tend to perform close to VBS. Such
a result is, however, not surprising because only a few engines, which had the
worst performance on training instances, were not included in the portfolio.

In order to shed some light on the actual portfolios configuration, Table 2
shows the CPU-time allocated to each planner by the proposed configuration
techniques. As expected, Iterative-All and Iterative-Single portfolios include a
large number of solvers (sometimes all those made available). They mainly dif-
fer in terms of CPU-time allocated to each planning engine, and in the order
in which engines are executed (not shown). We observed that Iterative-All and
Iterative-Single approaches tend to schedule “highly promising” engines with
shorter timeslots first. Longer timeslots are allocated later to slower but still
promising solvers. Overall and Super-Naive approaches always include Mercury,
as it is the planning engine that achieves the best PAR10 score on the training
set. The remaining selected engines are slightly different and, according to deliv-
ered performance, the focus on complementarity of planning engines allows the
Overall approach to configure a more robust portfolio.

3.1 From Wallclock to CPU Time

Results shown in the left side of Table 1 refer to portfolios run using a 300
wallclock time seconds limit. Evidently, this means that the actual CPU-time
given to portfolios is twice (in case of 2 cores) or four times (4 cores) larger
than the CPU-time available for basic planners. To investigate this aspect, we
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re-configured our portfolios for running 75 wallclock seconds when 4 cores are
available, and 150 wallclock seconds when 2 cores are made available. For these
shorter time horizons, the granularity value of iterative-based approaches has
been reduced to 25 seconds. The performance of the configured portfolios, along
those of the best and worst planning engines, are shown in the right side of Table
1. All the configured portfolios that outperform the best engine, achieved sta-
tistically significant better performance (according to the Wilcoxon test) than
Mpc (the best performing basic solver). Only the performance achieved by the
Overall and Super-Naive portfolios, configured for running on 2 cores, are worse
than Mpc when wallclock time was considered (Table 1 left), and even worse
when CPU was considered (Table 1 right). These approaches are strongly pe-
nalised when short wallclock time is made available, also in the light of the fact
that training and testing instances are very different: this is because they tend to
prefer planners that solve “easy” problems very quickly, that provide immediate
PAR10 reward. Also, as they can select only 2 planners, mistakes come with a
high price.

Results in Table 1 indicate that best PAR10 and coverage performance are
achieved when portfolios can run on four cores, despite the fact that less “se-
quential” CPU-time is available. When configuring for four cores, our approaches
tend to include in the portfolios short runs of many different planning engines:
this strategy provides better performance and guarantees a high level of robust-
ness. This behaviour of our portfolio configuration techniques is supported by
the results discussed in [11] stating that an engine is likely to solve a problem
either fast or not at all.

3.2 Domain-by-Domain Analysis

Table 3 presents the domain-by-domain performance of the configured parallel
portfolios, exploiting 2 or 4 cores. It also gives details on the performance of the
best basic planner (Mpc), and the VBS. It is worth reminding that portfolios
have been configured for minimising the PAR10 score on the training problems.
Interestingly, the portfolios configured by the Iterative-All approach –which de-
livered the best total PAR10 performance– do not excel in most of the domains.
They rarely obtain the best performance on a domain, but the achieved PAR10
score is usually very close to the best one, and significantly better than the
worst observed performance. Although Super-Naive and Overall approaches can
achieve the best performance on some domains they can be dramatically weak
in many others. Remarkably, Super-Naive and Overall run on 2 cores achieved
worse performance than Iterative-Single/All run on a single core. With a rel-
atively small number of cores (with respect to the number of basic planners),
the Iterative approaches are able to effectively combine planners into parallel
portfolios, as can be seen from the results presented in Table 1 when using 2 or
4 cores. From this perspective, it is safe to claim that the Iterative-All approach
is able to configure robust portfolios regardless of the cores/basic planners ratio.
Robustness of the portfolios is also confirmed by their high coverage. On the
contrary, Super-Naive and Overall approaches can be extremely performant on
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Table 3. PAR10, coverage, and IPC score achieved by the generated portfolios and
the considered planners running on the 140 testing benchmark instances. VBS stands
for the Virtual Best Solver. Bold (underline) indicates best performance achieved when
using 2 (4) cores. Due to rounding, some totals may not correspond with the sum of
the separate values.

PAR10
Domain Super-Naive Overall Iterative-Single Iterative-All Mpc VBS

2 4 2 4 2 4 2 4
CaveDiving 2573.1 1951.9 2573.1 2128.0 1995.6 1995.6 1965.2 1950.2 2418.5 1950.2
ChildSnack 2286.4 2286.4 20.0 19.1 135.6 135.6 257.2 44.9 1951.7 19.1
CityCar 2702.8 1655.7 2702.8 1657.5 1363.1 1363.1 1369.6 1364.2 1657.5 1357.7
GED 18.3 18.3 99.2 18.3 457.2 457.2 457.2 40.8 1383.7 18.3
Hiking 1063.9 488.7 1376.2 919.8 920.9 920.9 1079.0 930.7 1961.1 488.5
Maintenance 1506.9 906.4 1506.9 1055.8 630.9 176.2 615.5 194.5 1055.8 20.0
Tetris 2709.8 2709.8 2709.8 2012.7 2857.4 30.2 2854.9 222.2 2155.9 30.2
Total 1837.3 1431.0 1569.7 1115.9 1194.4 725.5 1228.4 678.2 1797.7 554.9

IPC Score
Domain Super-Naive Overall Iterative-Single Iterative-All Mpc VBS

2 4 2 4 2 4 2 4
CaveDiving 0.9 3.7 0.9 2.6 2.3 2.3 3.1 7.0 1.9 7.0
ChildSnack 1.3 1.3 17.3 20.0 8.9 8.9 12.5 15.5 6.5 20.0
CityCar 0.7 7.4 0.7 7.4 8.6 8.6 8.6 8.8 7.4 11.0
GED 20.0 20.0 9.8 20.0 17.0 17.0 17.0 19.0 4.9 20.0
Hiking 12.7 16.8 6.4 13.8 13.8 13.8 12.0 13.1 3.8 17.0
Maintenance 5.4 9.5 5.4 12.3 9.5 13.3 13.7 16.1 12.3 20.0
Tetris 1.0 1.0 1.0 3.5 0.4 20.0 0.5 10.6 3.0 20.0
Total 42.2 60.4 41.8 80.4 61.3 84.6 68.0 90.9 40.4 115.0

Coverage
Domain Super-Naive Overall Iterative-Single Iterative-All Mpc VBS

2 4 2 4 2 4 2 4
CaveDiving 15.0 35.0 15.0 30.0 35.0 35.0 35.0 35.0 20.0 35.0
ChildSnack 25.0 25.0 100.0 100.0 100.0 100.0 95.0 100.0 35.0 100.0
CityCar 10.0 45.0 10.0 45.0 55.0 55.0 55.0 55.0 45.0 55.0
GED 100.0 100.0 100.0 100.0 85.0 85.0 85.0 100.0 55.0 100.0
Hiking 65.0 85.0 55.0 70.0 70.0 70.0 65.0 70.0 35.0 85.0
Maintenance 50.0 70.0 50.0 65.0 80.0 95.0 80.0 95.0 65.0 100.0
Tetris 10.0 10.0 10.0 35.0 5.0 100.0 5.0 100.0 30.0 100.0
Total 39.3 52.9 48.6 63.6 61.4 77.1 60.0 79.3 40.7 82.1

specific domains, but they dramatically fail to generalise in many others. This is
possibly because selected planners are not very complementary, and they tend
to perform well on the same set of testing problems. Interestingly, Iterative-All
is the approach that maximises the PAR10 improvement given by 2 additional
cores. In the light of the already high coverage delivered by Iterative-All running
on 2 cores, such a result highlights the ability of this approach in selecting and
combining planners that can quickly solve challenging planning instances.

3.3 Comparison Against the State of the Art

For better contextualising the performance achieved by the configured portfo-
lios, we compared them with the winner of the Multicore track of IPC 2014:
ArvandHerd [21]. When run on 4 cores, with a 300 wallclock seconds timeout,
ArvandHerd was able to solve 60.7% of the testing problems, and achieved a
PAR10 score of 1229.4 and an IPC score of 48.7. According to the results shown
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Table 4. PAR10, coverage, and IPC score achieved by the generated portfolios, Ar-
vandHerd, running on the 140 testing benchmark instances for 300 wallclock-time sec-
onds. Systems are listed in the order of increasing PAR10. 2 and 4 indicate the number
of cores exploited by the portfolio.

Planner PAR10 Cov. IPC

Iterative-All-4 678.2 79.3 90.9
Iterative-Single-4 725.5 77.1 84.6
Overall-4 1115.9 63.6 80.4
Iterative-Single-2 1194.4 61.4 61.3
Iterative-All-2 1228.4 60.0 68.0
ArvandHerd 1229.4 60.7 48.7
Super-Naive-4 1431.0 52.9 60.4
Overall-2 1569.7 48.6 41.8
PbP-like 1837.3 39.3 42.2
Super-Naive-2 1837.3 39.3 42.2

in Table 1, coverage and PAR10 are similar to those achieved by Iterative-All
running on 2 cores. Remarkably, Iterative-All-2 shows significantly better per-
formance in terms of IPC score (+19.3), indicating that despite the smaller
number of cores, Iterative-All-2 is faster in providing solutions. Furthermore, we
extended the wallclock time available to ArvandHerd to 1800 seconds, as in the
Multicore track of IPC 2014. With this extended timeout, ArvandHerd is able
to solve 78.0% of the testing problems. This is in line with the coverage result
of our Iterative-Single portfolio, and worse than the coverage of the Iterative-All
portfolio, both running on 4 cores but with a 300 seconds timeout. Such results
support the hypothesis that combining planners in parallel portfolios is, at the
state of the art, the most fruitful way for exploiting multicore machines.

In order to compare the proposed approaches with the state of the art of
static portfolio generation, here we consider PbP [5], which won the Learning
track of IPC 2008 and IPC 2011. To the best of our knowledge, PbP is the only
portfolio-based approach for planning that is able to configure static portfolios
of different planning engines, optimised for minimising the CPU-time needed to
find a solution to a given planning instance.

The PbP configuration approach relies on a statistical analysis of the perfor-
mance of the planners in order to configure a portfolio. Since the performance
of a portfolio is highly affected by the pool of basic planners which are made
available, we run the PbP portfolio configuration technique using exactly the
same training instances and the same basic planners which are exploited by
our methods. Therefore, PbP has been used for configuring a single domain-
independent portfolio. For this reason, it does not include any macro-action or
any domain-specific configuration of the considered basic planners. It is worth
remembering that PbP has been designed for configuring sequential portfolios:
planners that are included in the portfolio are scheduled using a round-robin
strategy. In our experiments, we used PbP for configuring a sequential portfolio
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with 1,200 CPU-time seconds allocated (300 seconds × 4 cores). Then, for paral-
lelising the execution of the configured portfolio, each included planner has been
run on an available core. Table 4 shows the performance achieved by a parallel
portfolio configured using the PbP technique. It should be noted that it includes
two planners: Mercury and Yahsp3, which are also the planners selected by the
Super-Naive-2 technique. Such results provide evidence indicating that the con-
figuration of parallel approaches requires some specifically designed techniques,
as it is intrinsically different from the configuration of sequential portfolios.

4 Related Work

Parallel portfolio techniques have been recently introduced and investigated in
several areas of AI, such as SAT and ASP [1, 13].

Focusing on automated planning systems that took part in IPC 2014, IBa-
CoP [2] is an approach that configures instance-specific portfolios by extracting
and assessing instance features –numerical values summarising properties of a
given instance–, and empirical predictive models of the performance of consid-
ered planners. Planners can be combined with the aim of maximising the quality
of generated plans, or to minimise the runtime. IBaCoP took part in IPC 2014,
and has been used also to configure parallel portfolios –it was the runner-up
of the multicore track– optimising the quality of plans. Unlike static portfolios,
instance-specific portfolios require additional knowledge to be extracted by both
training and testing instances, under the form of instance features. MIPlan [14,
15] exploits a Mixed-Integer Programming approach for combining planners into
static portfolios, either sequential or parallel. Portfolios are optimised to max-
imise the probability of providing the best available quality plans at any point in
time. Cedalion [18] is an approach able to configure sequential portfolios by au-
tomatically generating different configurations of a given planner. Starting with
an empty portfolio, it adds the most improving configuration to the existing
portfolio in each iteration, according to a given metric. In order to maximise the
complementarity of configurations, they are generated using different training
sets.

Other well-known approaches include PbP and Fast Downward StoneSoup
[17]. The former has been discussed in the previous section. The latter combines
different heuristic of Fast Downward [8] into a sequential portfolio, optimised for
maximising the quality of generated plans.

5 Conclusion

According to the recent trend of increasing parallelism of hardware, in this work
we considered the problem of configuring robust domain-independent parallel
portfolios of planners. We introduced four new methods: two approaches assign
each available core to a single planner, while the other two techniques can allo-
cate more than one planner per core. We tested our approaches on benchmarks
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from the last IPC, and considered 10 state-of-the-art sequential planners for the
configuration of the portfolios.

Our extensive experimental analysis showed that: (i) selected planners at the
state of the art have a high level of complementarity and are therefore suitable to
be combined in portfolios; (ii) iterative-based approaches are more robust, and
perform consistently better than approaches that assign one single planner per
core; (iii) parallel portfolios outperform state-of-the-art parallel planning engine
ArvandHerd, thus are a fruitful way for exploiting the availability of multicore
machines; (iv) parallel portfolios are able to outperform sequential planners also
when run for the same CPU-time; and (v) the proposed approaches outperform
the (parallelised) portfolio designed by the state-of-the-art configuration tech-
nique.

Future work includes the configuration of portfolios of planners for maximis-
ing plans’ quality, and the extension of the proposed approaches to cope with
other planning areas, such as optimal planning. Finally, we see promise in tech-
niques, based on planning features [3], for configuring instance-specific parallel
portfolios, and in the exploitation of different sequential portfolios, generated
using diverse techniques and basic planners, on available CPUs.
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