
Parallel Performance Evaluation
Tools for HPC Systems

Allen D. Malony
Dept of Computer and
Information Sciences
University of Oregon

malony@cs.uoregon.edu

Shirley Moore
Innovative Computing

Laboratory
University of Tennessee
shirley@eecs.utk.edu

Rick Kufrin
National Center for

Supercomputing Applications
University of Illinois
rkufrin@illinois.edu

Markus Geimer
Jülich Supercomputing Centre

m.geimer@fz-juelich.de

Andreas Knüpfer
Technical University Dresden

andreas.knuepfer@tu-dresden.de

International Conference on Computational Science (ICCS 2009)
Baton Rouge, Louisiana, USA

May 24, 2009

Tutorial Agenda
Time Topic Speaker

8:00 – 8:45 Introduction to Performance Engineering Malony

8:45 – 9:00 POINT Malony

9:00 – 9:30 PAPI – Performance API Moore

9:30 – 10:00 PerfSuite Kufrin

10:00 – 10:30 BREAK

10:30 – 10:45 POINT/VI-HPS LiveDVD Malony

10:45 – 12:00 TAU Malony

12:00 – 1:30 LUNCH

1:30 – 1:45 VI-HPS Geimer

1:45 – 3:00 Scalasca Geimer

3:00 – 3:30 BREAK

3:30 – 4:45 Vampir/VampirTrace Knüpfer

4:45 – 5:30 LiveDVD Hands-on All

5:30 TUTORIAL ENDS

INTRODUCTION TO PERFORMANCE
ENGINEERING

Allen D. Malony

Performance Research Laboratory

University of Oregon

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

3

Performance Engineering

4

• Optimization process

• Effective use of performance technology

characterization

Performance

Tuning

Performance

Diagnosis

Performance

Experimentation

Performance

Observation

hypotheses

properties

• Instrumentation

• Measurement

• Analysis

• Visualization

Performance

Technology

• Experiment

management

• Performance

storage

Performance

Technology

• Data mining

• Models

• Expert systems

Performance

Technology

Performance Optimization Cycle

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

5

• Expose factors

• Collect performance data

• Calculate metrics

• Analyze results

• Visualize results

• Identify problems

• Tune performance

Instrumentation

Presentation

Measurement

Optimization

Analysis

Parallel Performance Properties

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

6

• Parallel code performance is influenced by
both sequential and parallel factors?

• Sequential factors

– Computation and memory use

– Input / output

• Parallel factors

– Thread / process interactions

– Communication and synchronization

Performance Observation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

7

• Understanding performance requires
observation of performance properties

• Performance tools and methodologies are
primarily distinguished by what observations
are made and how

– What aspects of performance factors are seen

– What performance data is obtained

• Tools and methods cover broad range

Metrics and Measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

8

• Observability depends on measurement

• A metric represents a type of measured data

– Count, time, hardware counters

• A measurement records performance data

– Associates with program execution aspects

• Derived metrics are computed

– Rates (e.g., flops)

• Metrics / measurements decided by need

Execution Time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

9

• Wall-clock time
– Based on realtime clock

• Virtual process time
– Time when process is executing

• ser time and system time

– Does not include time when process is stalled

• Parallel execution time
– Runs whenever any parallel part is executing

– Global time basis

Direct Performance Observation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

10

• Execution actions exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for observation

• Observation is direct
– Direct instrumentation of program code (probes)

– Instrumentation invokes performance measurement

– Event measurement = performance data + context

• Performance experiment
– Actual events + performance measurements

Indirect Performance Observation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

11

• Program code instrumentation is not used

• Performance is observed indirectly
– Execution is interrupted

• can be triggered by different events

– Execution state is queried (sampled)
• different performance data measured

– Event-based sampling (EBS)

• Performance attribution is inferred
– Determined by execution context (state)

– Observation resolution determined by interrupt period

– Performance data associated with context for period

Direct Observation: Events

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

12

• Event types
– Interval events (begin/end events)

• measures performance between begin and end
• metrics monotonically increase

– Atomic events
• used to capture performance data state

• Code events
– Routines, classes, templates
– Statement-level blocks, loops

• User-defined events
– Specified by the user

• Abstract mapping events

Direct Observation: Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

13

• Events defined by instrumentation access

• Instrumentation levels

– Source code – Library code

– Object code – Executable code

– Runtime system – Operating system

• Different levels provide different information

• Different tools needed for each level

• Levels can have different granularity

Direct Observation: Techniques

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

14

• Static instrumentation
– Program instrumented prior to execution

• Dynamic instrumentation
– Program instrumented at runtime

• Manual and automatic mechanisms

• Tool required for automatic support
– Source time: preprocessor, translator, compiler

– Link time: wrapper library, preload

– Execution time: binary rewrite, dynamic

• Advantages / disadvantages

Direct Observation: Mapping

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

15

• Associate

performance data

with high-level

semantic

abstractions

• Abstract events at

user-level provide

semantic context

Indirect Observation: Events/Triggers

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

16

• Events are actions external to program code
– Timer countdown, HW counter overflow, …

– Consequence of program execution

– Event frequency determined by:
• Type, setup, number enabled (exposed)

• Triggers used to invoke measurement tool
– Traps when events occur (interrupt)

– Associated with events

– May add differentiation to events

Indirect Observation: Context

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

17

• When events trigger, execution context determined
at time of trap (interrupt)

– Access to PC from interrupt frame

– Access to information about process/thread

– Possible access to call stack
• requires call stack unwinder

• Assumption is that the context was the same during
the preceding period

– Between successive triggers

– Statistical approximation valid for long running programs

Direct / Indirect Comparison

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

18

• Direct performance observation
 Measures performance data exactly

 Links performance data with application events

 Requires instrumentation of code

 Measurement overhead can cause execution intrusion
and possibly performance perturbation

• Indirect performance observation
 Argued to have less overhead and intrusion

 Can observe finer granularity

 No code modification required (may need symbols)

 Inexact measurement and attribution

Measurement Techniques

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

19

• When is measurement triggered?
– External agent (indirect, asynchronous)

• interrupts, hardware counter overflow, …

– Internal agent (direct, synchronous)
• through code modification

• How are measurements made?
– Profiling

• summarizes performance data during execution
• per process / thread and organized with respect to context

– Tracing
• trace record with performance data and timestamp
• per process / thread

Measured Performance

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

20

• Counts

• Durations

• Communication costs

• Synchronization costs

• Memory use

• Hardware counts

• System calls

Critical issues

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

21

• Accuracy
– Timing and counting accuracy depends on resolution
– Any performance measurement generates overhead

• Execution on performance measurement code

– Measurement overhead can lead to intrusion
– Intrusion can cause perturbation

• alters program behavior

• Granularity
– How many measurements are made
– How much overhead per measurement

• Tradeoff (general wisdom)
– Accuracy is inversely correlated with granularity

Profiling

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

22

• Recording of aggregated information

– Counts, time, …

• … about program and system entities

– Functions, loops, basic blocks, …

– Processes, threads

• Methods

– Event-based sampling (indirect, statistical)

– Direct measurement (deterministic)

inclusive

duration

exclusive

duration

int foo()

{

int a;

a = a + 1;

bar();

a = a + 1;

return a;

}

Inclusive and Exclusive Profiles

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

23

• Performance with respect to code regions

• Exclusive measurements for region only

• Inclusive measurements includes child regions

Flat and Callpath Profiles

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

24

• Static call graph
– Shows all parent-child calling relationships in a program

• Dynamic call graph
– Reflects actual execution time calling relationships

• Flat profile
– Performance metrics for when event is active
– Exclusive and inclusive

• Callpath profile
– Performance metrics for calling path (event chain)
– Differentiate performance with respect to program execution

state
– Exclusive and inclusive

Tracing Measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

25

void master {

...

send(B, tag, buf);

...

}

Process A:

void slave {

...

recv(A, tag, buf);

...

}

Process B:

void worker {

...

recv(A, tag, buf);

...

}

void master {

...

send(B, tag, buf);

...

} 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

1 master

2 worker

3 ...

trace(ENTER, 1);

trace(SEND, B);

trace(EXIT, 1);

trace(ENTER, 2);

trace(RECV, A);

trace(EXIT, 2);

MONITOR

Tracing Analysis and Visualization

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

26

1 master

2 worker

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main

master

worker

58 60 62 64 66 68 70

B

A

Trace Formats

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

27

• Different tools produce different formats

– Differ by event types supported

– Differ by ASCII and binary representations

• Vampir Trace Format (VTF)

• KOJAK (EPILOG)

• Jumpshot (SLOG-2)

• Paraver

• Open Trace Format (OTF)

– Supports interoperation between tracing tools

Profiling / Tracing Comparison

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

28

• Profiling
 Finite, bounded performance data size
 Applicable to both direct and indirect methods
 Loses time dimension (not entirely)
 Lacks ability to fully describe process interaction

• Tracing
 Temporal and spatial dimension to performance data
 Capture parallel dynamics and process interaction
 Some inconsistencies with indirect methods
 Unbounded performance data size (large)
 Complex event buffering and clock synchronization

Performance Problem Solving Goals

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

29

• Answer questions at multiple levels of interest
– High-level performance data spanning dimensions

• machine, applications, code revisions, data sets
• examine broad performance trends

– Data from low-level measurements
• use to predict application performance

• Discover general correlations
– performance and features of external environment

– Identify primary performance factors

• Benchmarking analysis for application prediction

• Workload analysis for machine assessment

Performance Analysis Questions

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

30

• How does performance vary with different compilers?

• Is poor performance correlated with certain OS features?

• Has a recent change caused unanticipated performance?

• How does performance vary with MPI variants?

• Why is one application version faster than another?

• What is the reason for the observed scaling behavior?

• Did two runs exhibit similar performance?

• How are performance data related to application events?

• Which machines will run my code the fastest and why?

• Which benchmarks predict my code performance best?

Automatic Performance Analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

31

Performance

database

Build

application

Execute

application

Simple

analysis

feedback

72%

Faster!

build

information

environment /

performance

data

Offline

analysis

Performance Data Management

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

32

• Performance diagnosis and optimization involves
multiple performance experiments

• Support for common performance data management
tasks augments tool use
– Performance experiment data and metadata storage
– Performance database and query

• What type of performance data should be stored?
– Parallel profiles or parallel traces
– Storage size will dictate
– Experiment metadata helps in meta analysis tasks

• Serves tool integration objectives

Metadata Collection

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

33

• Integration of metadata with each parallel profile
– Separate information from performance data

• Three ways to incorporate metadata
– Measured hardware/system information

• CPU speed, memory in GB, MPI node IDs, …

– Application instrumentation (application-specific)
• Application parameters, input data, domain decomposition
• Capture arbitrary name/value pair and save with experiment

– Data management tools can read additional metadata
• Compiler flags, submission scripts, input files, …
• Before or after execution

• Enhances analysis capabilities

Performance Data Mining

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

34

• Conduct parallel performance analysis in a
systematic, collaborative and reusable manner
– Manage performance complexity and automate process
– Discover performance relationship and properties
– Multi-experiment performance analysis

• Data mining applied to parallel performance data
– Comparative, clustering, correlation, characterization, …
– Large-scale performance data reduction

• Implement extensible analysis framework
– Abstraction / automation of data mining operations
– Interface to existing analysis and data mining tools

How to explain performance?

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

35

• Should not just redescribe performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision support

• Add knowledge to do more intelligent things
– Automated analysis needs good informed feedback
– Performance model generation requires interpretation

• Performance knowledge discovery framework
– Integrating meta-information
– Knowledge-based performance problem solving

Metadata and Knowledge Role

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

36

Performance Knowledge

Source

Code

Build

Environment

Run

Environment

Performance Result

Execution

You have to

capture these...

...to understand

this

Application Machine

Performance

Problems

Context Knowledge

Performance Optimization Process

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

37

• Performance characterization
– Identify major performance contributors
– Identify sources of performance inefficiency
– Utilize timing and hardware measures

• Performance diagnosis (Performance Debugging)
– Look for conditions of performance problems
– Determine if conditions are met and their severity
– What and where are the performance bottlenecks

• Performance tuning
– Focus on dominant performance contributors
– Eliminate main performance bottlenecks

POINT Project

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

38

• “High-Productivity Performance Engineering (Tools,
Methods, Training) for NSF HPC Applications”

– NSF SDCI, Software Improvement and Support

– University of Oregon, University of Tennessee, National
Center for Supercomputing Applications, Pittsburgh
Supercomputing Center

• POINT project

– Petascale Productivity from Open, Integrated Tools

– http://www.nic.uoregon.edu/point

Motivation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

39

• Promise of HPC through scalable scientific and
engineering applications

• Performance optimization through effective
performance engineering methods

– Performance analysis / tuning “best practices”

• Productive petascale HPC will require

– Robust parallel performance tools

– Training good performance problem solvers

Objectives

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

40

• Robust parallel performance environment

– Uniformly available across NSF HPC platforms

• Promote performance engineering

– Training in performance tools and methods

– Leverage NSF TeraGrid EOT

• Work with petascale applications teams

• Community building

Challenges

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

41

• Consistent performance tool environment

– Tool integration, interoperation, and scalability

– Uniform deployment across NSF HPC platforms

• Useful evaluation metrics and process

– Make part of code development routine

– Recording performance engineering history

• Develop performance engineering culture

– Proceed beyond “hand holding” engagements

Performance Engineering Levels

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

42

• Target different performance tool users
– Different levels of expertise

– Different performance problem solving needs

• Level 0 (entry)
– Simpler tool use, limited performance data

• Level 1 (intermediate)
– More tool sophistication, increased information

• Level 2 (advanced)
– Access to powerful performance techniques

POINT Project Organization

43

Testbed Apps

ENZO

NAMD

NEMO3D

Parallel Performance Technology

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

44

• PAPI
– University of Tennessee, Knoxville

• PerfSuite
– National Center for Supercomputing Applications

• TAU Performance System
– University of Oregon

• Kojak / Scalasca
– Research Centre Juelich

• Vampir and VampirTrace
– T.U. Dresden

Parallel Engineering Training

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

45

• User engagement

• User support in TeraGrid

• Training workshops

• Quantify tool impact

• POINT lead pilot site

– Pittsburgh Supercomputing Center

– NSF TeraGrid site

Testbed Applications

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

46

• ENZO
– Adaptive mesh refinement (AMR), grid-based hybrid code

(hydro+Nbody) designed to do simulations of cosmological
structure formation

• NAMD
– Mature community parallel molecular dynamics

application deployed for research in large-scale
biomolecular systems

• NEMO3D
– Quantum mechanical based simulation tool created to

provide quantitative predictions for nanometer-scale
semiconductor devices

PAPI

Shirley Moore, Dan Terpstra

Innovative Computing Lab

University of Tennessee, Knoxville

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

47

Hardware Counters

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

48

Hardware performance counters available on most modern
microprocessors can provide insight into:

1. Whole program timing

2. Cache behaviors

3. Branch behaviors

4. Memory and resource access patterns

5. Pipeline stalls

6. Floating point efficiency

7. Instructions per cycle

Hardware counter information can be obtained with:

1. Subroutine or basic block resolution

2. Process or thread attribution

What’s PAPI?

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

49

• Middleware to provide a consistent programming interface for
the performance counter hardware found in most major
micro-processors.

• Countable events are defined in two ways:
– Platform-neutral preset events
– Platform-dependent native events

• Presets can be derived from multiple native events
• All events are referenced by name and collected in EventSets

for sampling
• Events can be multiplexed if counters are limited
• Statistical sampling implemented by:

– Hardware overflow if supported by the platform
– Software overflow with timer driven sampling

Where’s PAPI

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

50

• PAPI runs on most modern processors and
operating systems of interest to HPC:
– IBM POWER series / AIX
– POWER4,5,6 PowerPC / Linux
– Blue Gene/L/P
– Intel Pentium series, Core2, Core i7 / Linux
– Intel Itanium 1, 2, Montecito, Montvale
– AMD Athlon, Opteron multicore / Linux
– Cray X1, X2, XT3/4/5 Catamount / CLE
– Altix, Sparc, SiCortex …

3rd Party and GUI Tools

PAPI HARDWARE SPECIFIC

LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level

User API
High Level

User API

PAPI Counter Interfaces
PAPI provides 3 interfaces to the
underlying counter hardware:

1. A Low Level API manages
hardware events in user defined
groups called EventSets, and
provides access to advanced
features.

2. A High Level API provides the
ability to start, stop and read the
counters for a specified list of
events.

3. Graphical and end-user tools provide
facile data collection and
visualization.

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

51

PAPI_L2_DCR: Level 1 data cache reads

PAPI_L2_DCW: Level 1 data cache writes

PAPI_L2_DCM: Level 1 data cache misses

PAPI_L2_ICH: Level 1 instruction cache hits

PAPI_L2_ICA: Level 1 instruction cache accesses

PAPI_L2_ICR: Level 1 instruction cache reads

PAPI_L2_ICW: Level 1 instruction cache writes

PAPI_L2_ICM: Level 1 instruction cache misses

PAPI_L2_TCH: Level 1 total cache hits

PAPI_L2_TCA: Level 1 total cache accesses

PAPI_L2_TCR: Level 1 total cache reads

PAPI_L2_TCW: Level 1 total cache writes

PAPI_L2_TCM: Level 1 cache misses

PAPI_L2_LDM: Level 1 load misses

PAPI_L2_STM: Level 1 store misses

Level 3 Cache
PAPI_L3_DCH: Level 1 data cache hits

PAPI_L3_DCA: Level 1 data cache accesses

PAPI_L3_DCR: Level 1 data cache reads

PAPI_L3_DCW: Level 1 data cache writes

PAPI_L3_DCM: Level 1 data cache misses

PAPI_L3_ICH: Level 1 instruction cache hits

PAPI_L3_ICA: Level 1 instruction cache accesses

PAPI_L3_ICR: Level 1 instruction cache reads

PAPI_L3_ICW: Level 1 instruction cache writes

PAPI_L3_ICM: Level 1 instruction cache misses

PAPI_L3_TCH: Level 1 total cache hits

PAPI_L3_TCA: Level 1 total cache accesses

PAPI_L3_TCR: Level 1 total cache reads

PAPI_L3_TCW: Level 1 total cache writes

PAPI_L3_TCM: Level 1 cache misses

PAPI_L3_LDM: Level 1 load misses

PAPI_L3_STM: Level 1 store misses

Cache Sharing
PAPI_CA_SNP: Requests for a snoop

PAPI_CA_SHR: Requests for exclusive access to shared cache line

PAPI_CA_CLN: Requests for exclusive access toinvalidation clean

PAPI Preset Events

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

52

Preset Events

Standard set of over 100 events for
application performance tuning

No standardization of the exact
definition

Mapped to either single or linear
combinations of native events on
each platform

Use papi_avail utility to see what
preset events are available on a
given platform

PAPI Native Events

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

53

• Native Events
– Any event countable by the CPU
– Same interface as for preset events
– Use papi_native_avail utility to see all

available native events

• Use papi_event_chooser utility to
select a compatible set of events

{ .pme_name = "L2_ST",

.pme_code = 0x2a,

.pme_flags = PFMLIB_CORE_CSPEC,

.pme_desc = "L2 store requests",

.pme_umasks = {

{ .pme_uname = "MESI",

.pme_udesc = "Any cacheline access",

.pme_ucode = 0xf

},

{ .pme_uname = "I_STATE",

.pme_udesc = "Invalid cacheline",

.pme_ucode = 0x1

},

{ .pme_uname = "S_STATE",

.pme_udesc = "Shared cacheline",

.pme_ucode = 0x2

},

{ .pme_uname = "E_STATE",

.pme_udesc = "Exclusive cacheline",

.pme_ucode = 0x4

},

{ .pme_uname = "M_STATE",

.pme_udesc = "Modified cacheline",

.pme_ucode = 0x8

}

{ .pme_uname = "SELF",

.pme_udesc = "This core",

.pme_ucode = 0x40

},

{ .pme_uname = "BOTH_CORES",

.pme_udesc = "Both cores",

. = 0xc0

}

},

.pme_numasks = 7

},

PRESET,

PAPI_L2_DCA,

DERIVED_ADD,

L2_LD:SELF:ANY:MESI,

L2_ST:SELF:MESI

PAPI High-level Interface

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

54

• Meant for application programmers wanting coarse-
grained measurements

• Calls the lower level API

• Allows only PAPI preset events

• Easier to use and less setup (less additional code)
than low-level

• Supports 8 calls in C or Fortran:
PAPI_start_counters PAPI_stop_counters

PAPI_read_counters PAPI_accum_counters

PAPI_num_counters

PAPI_ipc

PAPI_flips

PAPI_flops

PAPI High-level Example

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

55

#include "papi.h”

#define NUM_EVENTS 2

long_long values[NUM_EVENTS];

unsigned int

Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC};

/* Start the counters */

PAPI_start_counters((int*)Events,NUM_EVENTS);

/* What we are monitoring… */

do_work();

/* Stop counters and store results in values */

retval = PAPI_stop_counters(values,NUM_EVENTS);

Low-level Interface

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

56

• Increased efficiency and functionality over the
high level PAPI interface

• Obtain information about the executable, the
hardware, and the memory environment

• Multiplexing

• Callbacks on counter overflow

• Profiling

• About 60 functions

PAPI Low-level Example

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

57

#include "papi.h”

#define NUM_EVENTS 2

int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC};

int EventSet;

long_long values[NUM_EVENTS];

/* Initialize the Library */

retval = PAPI_library_init(PAPI_VER_CURRENT);

/* Allocate space for the new eventset and do setup */

retval = PAPI_create_eventset(&EventSet);

/* Add Flops and total cycles to the eventset */

retval = PAPI_add_events(EventSet,Events,NUM_EVENTS);

/* Start the counters */

retval = PAPI_start(EventSet);

do_work(); /* What we want to monitor*/

/*Stop counters and store results in values */

retval = PAPI_stop(EventSet,values);

PAPI & Multicore

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

58

• Multicore is the (near term) future of
petascale computing

• Minimizing resource contention will be key

– Memory bandwidth

– Cache sharing

– Bus and other resource contention

The Multicore Dilemma

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

59

• Multicore is the (near term) future of Petascale
computing

• Minimizing Resource contention is key
– Memory bandwidth

– Cache sharing & collisions

– Bus and other resource contention

• Current tools don’t support first-person counting of
shared events

• Current architectures don’t encourage first-person
counting of shared events

Multicore counter support

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

60

• Intel Core2 Duos:
– SELF/ANY
– L2 shared cache, bus, snoop
– 39 events/~140 are core qualified

• AMD Barcelona
– 4 L3 shared cache events:

• READ_REQUEST_TO_L3_CACHE
• L3_CACHE_MISSES
• L3_FILLS_CAUSED_BY_L2_EVICTIONS
• L3_EVICTIONS

– First 3 are qualified per core:
• CORE0, CORE1, CORE2, CORE3
• Only 1 core can count these events at a time

Multicore counter support (cont.)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

61

• Intel i7 (Nehalem)
– Nehalem support available in development

version of PAPI

– The Nehalem has 7 counters per core; 3 fixed and
4 general purpose.

– Another 8 shared counters are provided on-chip to
support "Uncore" events. These counters are not
currently supported by PAPI.

– 117 native events are available to PAPI users,
along with 28 PRESET events.

Current “State of the Art”

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

62

• Counter support for shared resources is
broken
– Every vendor has a different approach

– Often 3rd person, not 1st person

– Counts often polluted by other cores

– No exclusive reservation of shared counter
resources

– No migration of events with tasks

• PAPI research is underway to address this

Extending PAPI beyond the CPU

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

63

• PAPI has historically targeted on on-processor
performance counters

• Several categories of off-processor counters exist
– network interfaces: Myrinet, Infiniband, GigE
– memory interfaces: Cray X1, SeaStar, Gemini
– thermal and power interfaces: ACPI, lm-sensors
– accelerators?

• CHALLENGE:
– Extend the PAPI interface to address multiple counter

domains
– Preserve the PAPI calling semantics, ease of use, and

platform independence for existing applications

Motivation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

64

• Performance counters also exist in off-CPU resources
• All information is valuable for performance optimization
• Increasing cpu counts & power demands place greater

importance on:
– Thermal health and management
– Power consumption

• Multicore systems require careful resource balancing
• Higher processor & core counts make communications metrics

more critical:
– Bandwidth
– Latency
– Dropped packets
– Bytes transferred

Limitations

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

65

• Interfaces are often obscure, unexposed or non-
standard

• Performance data (accelerators) can be vastly
different than cpus

• Measurements are usually system-wide and
asynchronous
– May not matter on dedicated single-task OS’s like Cray

Catamount or CLE and Blue Gene CNK

– But matters more for Multicore

• Often very different time scales

Component PAPI Goals

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

66

• Support simultaneous access to on- and off-
processor counters

• Isolate hardware dependent code in separable
‘component’ modules

• Extend platform independent code to support
multiple simultaneous components

• Add or modify API calls to support access to any
of several components

• Modify build environment for easy selection and
configuration of multiple available components

PAPI HARDWARE SPECIFIC

LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level

User API

High Level

User API

Monolithic „PAPI Classic‟

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

67

PAPI FRAMEWORK

Low Level

User API

High Level

User API

PAPI COMPONENT

(CPU)

Operating System

Counter Hardware

Component PAPI

Developer APIDeveloper API

PAPI COMPONENT

(NETWORK)

Operating System

Counter Hardware

PAPI COMPONENT

(THERMAL)

Operating System

Counter Hardware

Developer API

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

68

Multi Component Measurements

 HPCC HPL benchmark on Opteron with 3 performance metrics:
 FLOPS; Temperature; Network Sends/Receives

 Temperature is from an on-chip thermal diode

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

69

Myrinet MX Counters
LANAI_UPTIME

COUNTERS_UPTIME

BAD_CRC8

BAD_CRC32

UNSTRIPPED_ROUTE

PKT_DESC_INVALID

RECV_PKT_ERRORS

PKT_MISROUTED

DATA_SRC_UNKNOWN

DATA_BAD_ENDPT

DATA_ENDPT_CLOSED

DATA_BAD_SESSION

PUSH_BAD_WINDOW

PUSH_DUPLICATE

PUSH_OBSOLETE

PUSH_RACE_DRIVER

PUSH_BAD_SEND_HANDLE

_MAGIC

PUSH_BAD_SRC_MAGIC

PULL_OBSOLETE

PULL_NOTIFY_OBSOLETE

PULL_RACE_DRIVER

ACK_BAD_TYPE

ACK_BAD_MAGIC

ACK_RESEND_RACE

LATE_ACK

ACK_NACK_FRAMES_IN_PIPE

NACK_BAD_ENDPT

NACK_ENDPT_CLOSED

NACK_BAD_SESSION

NACK_BAD_RDMAWIN

NACK_EVENTQ_FULL

SEND_BAD_RDMAWIN

CONNECT_TIMEOUT

CONNECT_SRC_UNKNOWN

QUERY_BAD_MAGIC

QUERY_TIMED_OUT

QUERY_SRC_UNKNOWN

RAW_SENDS

RAW_RECEIVES

RAW_OVERSIZED_PACKETS

RAW_RECV_OVERRUN

RAW_DISABLED

CONNECT_SEND

CONNECT_RECV

ACK_SEND

ACK_RECV

PUSH_SEND

PUSH_RECV

QUERY_SEND

QUERY_RECV

REPLY_SEND

REPLY_RECV

QUERY_UNKNOWN

DATA_SEND_NULL

DATA_SEND_SMALL

DATA_SEND_MEDIUM

DATA_SEND_RNDV

DATA_SEND_PULL

DATA_RECV_NULL

DATA_RECV_SMALL_INLINE

DATA_RECV_SMALL_COPY

DATA_RECV_MEDIUM

DATA_RECV_RNDV

DATA_RECV_PULL

ETHER_SEND_UNICAST_CNT

ETHER_SEND_MULTICAST_C

NT

ETHER_RECV_SMALL_CNT

ETHER_RECV_BIG_CNT

ETHER_OVERRUN

ETHER_OVERSIZED

DATA_RECV_NO_CREDITS

PACKETS_RESENT

PACKETS_DROPPED

MAPPER_ROUTES_UPDATE

ROUTE_DISPERSION

OUT_OF_SEND_HANDLES

OUT_OF_PULL_HANDLES

OUT_OF_PUSH_HANDLES

MEDIUM_CONT_RACE

CMD_TYPE_UNKNOWN

UREQ_TYPE_UNKNOWN

INTERRUPTS_OVERRUN

WAITING_FOR_INTERRUPT_DMA

WAITING_FOR_INTERRUPT_ACK

WAITING_FOR_INTERRUPT_TIM

ER

SLABS_RECYCLING

SLABS_PRESSURE

SLABS_STARVATION

OUT_OF_RDMA_HANDLES

EVENTQ_FULL

BUFFER_DROP

MEMORY_DROP

HARDWARE_FLOW_CONTROL

SIMULATED_PACKETS_LOST

LOGGING_FRAMES_DUMPED

WAKE_INTERRUPTS

AVERTED_WAKEUP_RACE

DMA_METADATA_RACE

70

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Myrinet MX Counters
LANAI_UPTIME

COUNTERS_UPTIME

BAD_CRC8

BAD_CRC32

UNSTRIPPED_ROUTE

PKT_DESC_INVALID

RECV_PKT_ERRORS

PKT_MISROUTED

DATA_SRC_UNKNOWN

DATA_BAD_ENDPT

DATA_ENDPT_CLOSED

DATA_BAD_SESSION

PUSH_BAD_WINDOW

PUSH_DUPLICATE

PUSH_OBSOLETE

PUSH_RACE_DRIVER

PUSH_BAD_SEND_HANDLE

_MAGIC

PUSH_BAD_SRC_MAGIC

PULL_OBSOLETE

PULL_NOTIFY_OBSOLETE

PULL_RACE_DRIVER

ACK_BAD_TYPE

ACK_BAD_MAGIC

ACK_RESEND_RACE

LATE_ACK

ACK_NACK_FRAMES_IN_PIPE

NACK_BAD_ENDPT

NACK_ENDPT_CLOSED

NACK_BAD_SESSION

NACK_BAD_RDMAWIN

NACK_EVENTQ_FULL

SEND_BAD_RDMAWIN

CONNECT_TIMEOUT

CONNECT_SRC_UNKNOWN

QUERY_BAD_MAGIC

QUERY_TIMED_OUT

QUERY_SRC_UNKNOWN

RAW_SENDS

RAW_RECEIVES

RAW_OVERSIZED_PACKETS

RAW_RECV_OVERRUN

RAW_DISABLED

CONNECT_SEND

CONNECT_RECV

ACK_SEND

ACK_RECV

PUSH_SEND

PUSH_RECV

QUERY_SEND

QUERY_RECV

REPLY_SEND

REPLY_RECV

QUERY_UNKNOWN

DATA_SEND_NULL

DATA_SEND_SMALL

DATA_SEND_MEDIUM

DATA_SEND_RNDV

DATA_SEND_PULL

DATA_RECV_NULL

DATA_RECV_SMALL_INLINE

DATA_RECV_SMALL_COPY

DATA_RECV_MEDIUM

DATA_RECV_RNDV

DATA_RECV_PULL

ETHER_SEND_UNICAST_CNT

ETHER_SEND_MULTICAST_C

NT

ETHER_RECV_SMALL_CNT

ETHER_RECV_BIG_CNT

ETHER_OVERRUN

ETHER_OVERSIZED

DATA_RECV_NO_CREDITS

PACKETS_RESENT

PACKETS_DROPPED

MAPPER_ROUTES_UPDATE

ROUTE_DISPERSION

OUT_OF_SEND_HANDLES

OUT_OF_PULL_HANDLES

OUT_OF_PUSH_HANDLES

MEDIUM_CONT_RACE

CMD_TYPE_UNKNOWN

UREQ_TYPE_UNKNOWN

INTERRUPTS_OVERRUN

WAITING_FOR_INTERRUPT_DMA

WAITING_FOR_INTERRUPT_ACK

WAITING_FOR_INTERRUPT_TIM

ER

SLABS_RECYCLING

SLABS_PRESSURE

SLABS_STARVATION

OUT_OF_RDMA_HANDLES

EVENTQ_FULL

BUFFER_DROP

MEMORY_DROP

HARDWARE_FLOW_CONTROL

SIMULATED_PACKETS_LOST

LOGGING_FRAMES_DUMPED

WAKE_INTERRUPTS

AVERTED_WAKEUP_RACE

DMA_METADATA_RACE

71

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

PAPI-C Status

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

72

• PAPI 3.9 technology preview available with documentation

• PAPI 3.9.x under active development

• Implemented Components:
– Myrinet MX

– ACPI temperature sensor component

– ‘toy’ network component

• Tested on HPC Challenge benchmarks

• Tested platforms include Pentium III, Pentium 4, Core2,
Itanium and Opteron

• Platforms in development include Nehalem, POWER, SiCortex,
BG/P

PAPI Release Timeline

73

• PAPI 3.6.3 2Q 2009
– Nehalem, Shanghai support

– Terminal releases of ‘PAPI Classic’

• Component PAPI 4.0 by 3Q 2009
– Components to follow

• Ideas welcome

Available Now

PAPI 3.6.2
2008-10-03

PAPI-C 3.9
2007-04-05

PAPI-C 4.0
3Q 2009

component
component

component
component

PAPI 3.6.3
2Q 2009

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

New in PAPI

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

74

• 3.6.0
– AMD Barcelona (quad-core)

– Cray XT3/4, X2 CLE

– Itanium multi-core

– FreeBSD support

– POWER6 / Linux

• 3.6.1
– SiCortex, Cell

• 3.6.2
– POWER 5, 5+, 5++, 6 AIX

• 3.6.3
– Nehalem, Shanghai

Future Directions

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

75

• Power PAPI
– Measure power consumption

• Multi-core support
– Memory bandwidth
– Cache sharing
– Bus and other resource contention

• User–defined events
– USER, L2_DTLB_miss_ratio, DERIVED_POSTFIX,
|N0|N1|N2|+|/|, DTLB_L1M_L2M, DTLB_L1M_L2H,
DTLB_L1M_L2M

• Multi-CPU PAPI
– For heterogeneous systems like RoadRunner

• User-driven documentation
– Wiki man pages
– Wiki users guide
– User submitted event configurations

For more information

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

76

• PAPI Website: http://icl.cs.utk.edu/papi/

– Software

– Release notes

– Documentation

– Links to tools that use PAPI

– Mailing/discussion lists

mailto:scalasca@fz-juelich.de

PERFSUITE

Rick Kufrin

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

77

PerfSuite Background

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

78

• Active development since Linux clusters were
adopted at NCSA in 2001
– No tools then available for CPU beyond gprof

• UI/NCSA Open Source license approved 2003

• Targeted to users of all levels of expertise
– The intent is to provide an easy-to-use mechanism for

measuring application performance, and to expose
problem areas for further exploration

• Low measurement overhead also important

• Close collaboration/sharing with UTK from outset

PerfSuite and POINT

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

79

• NSF SDCI program enables maintenance, enhancement,
interoperability, and integration

• PerfSuite fills the Level 0 (entry) role for performance measurement
within POINT
– Simple (in most cases, no code change/relink needed)
– Low overhead (default case is nearly non-intrusive)
– Limited information… but still very useful and in some cases sufficient

• PerfSuite has never attempted to supply sophisticated
graphical/visualization or data management capabilities
– By partnering with TAU, advanced graphical tools come as a natural by-

product
– PerfDMF infrastructure is mature, and well-suited for importing data

collected by PerfSuite

• POINT’s application and training thrust (PSC) will expose to wider
user base

What Does PerfSuite Provide?

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

80

• Overall hardware performance event counts for all or a
portion of your application

• Profiling with statistical sampling using either time- or event-
based triggers
– Generalization of the approach used by gprof

• Flexible XML-based output along with various techniques for
display, manipulation, combining, transformation

• Information about processor in use (type, cache/TLB specs,
etc) – this “metadata” is stored along with measurement

• Functionality available through easy-to-use command line tool
that can be used with most applications without need for
modification

• Also available through several libraries for finer control

PerfSuite and XML

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

81

• In PerfSuite, nearly all data (input, output, configuration,
etc) is represented as XML (eXtensible Markup Language)
documents

• This provides the ability to manipulate & transform the data
in many ways using standard software / skills

• Machine-independent (no binary files)
– ... opens the data up to the user

• There are numerous high-quality XML-aware libraries
available from either compiled or interpreted languages
that can make it easy to transform the data for your needs
– New in PS version 1.0.0: Java API for accessing data

• The structured, well-defined nature of XML makes it natural
for import into DB-driven infrastructure such as PerfDMF

PerfSuite Counter-Related Software

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

82

• Four performance counter-related utilities:
– psconfig - configure / select performance events
– psinv - query events and machine information
– psrun - generate raw counter or statistical profiling data from an

unmodified binary
– psprocess - pre- and post-process data

• Three libraries (shared and static, serial and threaded)
– libperfsuite – the “core” library that can be used standalone and will

be built regardless of the availability of other software
– libpshwpc – HardWare Performance Counter library, also built

regardless of other software. Without counter support, will only
perform time-based profiling through profil() or interval timers.

– libpshwpc_mpi – a convenience library based on the MPI standard
PMPI interface.

• PerfSuite does not require kernel patches

psinv: Processor Inventory

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

83

• Lists information about the
characteristics of the computer

• This same information is also
stored in psrun XML output and
is useful for later generating
derived metrics (or for
remembering where you ran
your program!)

• x86/x86-64 version also shows
processor features and
descriptions

• Lists available hardware
performance events

titan:~3% psinv -v

System Information -

Processors: 2

Total Memory: 2007.16 MB

System Page Size: 16.00 KB

Processor Information -

Vendor: Intel

Processor family: IPF

Model (Type): Itanium

Revision: 6

Clock Speed: 800.136 MHz

Cache and TLB Information -

Cache levels: 3

Caches/TLBs: 7

Cache Details -

Level 1:

Type: Data

Size: 16 KB

Line size: 32 bytes

Associativity: 4-way set associative

Type: Instruction

Size: 16 KB

Line size: 32 bytes

Associativity: 4-way set associative

psinv: PAPI Event Summary

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

84

% psinv -p

PAPI Standard Event Information -

Standard events: 43

Non-derived events: 26

Derived events: 17

PAPI Standard Event Details -

Non-derived:

PAPI_BR_INS: Branch instructions

PAPI_BR_PRC: Conditional branch instructions correctly predicted

PAPI_L1_DCA: Level 1 data cache accesses

PAPI_L1_DCM: Level 1 data cache misses

PAPI_L1_ICM: Level 1 instruction cache misses

PAPI_L2_DCA: Level 2 data cache accesses

PAPI_L2_DCR: Level 2 data cache reads

PAPI_L2_DCW: Level 2 data cache writes

PAPI_L2_ICM: Level 2 instruction cache misses

PAPI_L2_STM: Level 2 store misses

PAPI_L2_TCM: Level 2 cache misses

Derived:

PAPI_BR_MSP: Conditional branch instructions mispredicted

PAPI_BR_NTK: Conditional branch instructions not taken

PAPI_BR_TKN: Conditional branch instructions taken

PAPI_FLOPS: Floating point instructions per second

PAPI_FP_INS: Floating point instructions

PAPI_L1_DCH: Level 1 data cache hits

psrun: Performance Measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

85

• Hardware performance counting and profiling
with unmodified dynamically-linked executables

• Available for x86, x86-64, and ia64
• POSIX threads support
• Automatic multiplexing
• Can be used with MPI and OpenMP
• Optionally collects resource usage
• Supports all PAPI standard and CPU-native events
• Input/Output = XML documents (can request

plain text)

psrun “Cookbook”

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

86

First, be sure to set all paths properly (can do in .cshrc/.profile)

% set PSDIR=/opt/perfsuite

% source $PSDIR/bin/psenv.csh

Use psrun on your program to generate the data,

then use psprocess to produce an HTML file (default is plain text)

% psrun myprog

% psprocess --html myprog.12345.xml > myprog.html

Take a look at the results

% your-web-browser myprog.html

Second run, but this time profiling instead of counting

% psrun –C -c papi_profile_cycles.xml myprog

% psprocess -e myprog myprog.67890.xml

psprocess: Post-process Results

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

87

• This style of output is
customizable by you.

• By default, the information
it contains and its visual
appearance are based on
PerfSuite-provided defaults,
but these can be easily
replaced to suit your
preference.

• This output is generated by
psprocess using XML
Transformations. The
stylesheet is in the
share/perfsuite/xml/pshwpc
subdirectory, with a “xsl”
file extension

psprocess: Text Mode (default)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

88

PerfSuite Hardware Performance Summary Report

Version : 1.0

Created : Mon Dec 30 11:31:53 AM Central Standard Time 2002

Generator : psprocess 0.5

XML Source : /u/ncsa/anyuser/performance/psrun-ia64.xml

Execution Information

===========================

Date : Sun Dec 15 21:01:20 2002

Host : user01

Processor and System Information

===========================

Node CPUs : 2

Vendor : Intel

Family : IPF

Model : Itanium

CPU Revision : 6

Clock (MHz) : 800.136

Memory (MB) : 2007.16

Pagesize (KB): 16

psprocess: Text Mode, cont’d

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

89

The reports (text or HTML)
generated by psprocess have
several sections, covering:

• Report creation details
• Run details
• Machine information
• Raw counter listings
• Counter explanations and index
• Derived metrics
• Run annotation defined by you

Derived metrics are evaluated at
run-time and can be extended (text
mode only)

Cache Information

==========================

Cache levels : 3

Level 1

Type : data

Size (KB) : 16

Linesize (B) : 32

Assoc : 4

Type : instruction

Size (KB) : 16

Linesize (B) : 32

Assoc : 4

Level 2

Type : unified

Size (KB) : 96

Linesize (B) : 64

Assoc : 6

psprocess: Text Mode, cont’d

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

90

Index Description Counter Value

===

1 Conditional branch instructions mispredicted..... 4831072449

4 Floating point instructions...................... 86124489172

5 Total cycles..................................... 594547754568

6 Instructions completed........................... 1049339828741

Statistics

===

Graduated instructions per cycle................... 1.765

Graduated floating point instructions per cycle.... 0.145

Level 3 cache miss ratio (data).................... 0.957

Bandwidth used to level 3 cache (MB/s)............. 385.087

% cycles with no instruction issue................. 10.410

% cycles stalled on memory access.................. 43.139

MFLOPS (cycles).................................... 115.905

MFLOPS (wallclock)................................. 114.441

Configuring Your Measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

91

• All PerfSuite runs are configured according to an XML
document that specifies what is to be measured
– if you don’t specify a custom configuration, a default is used

• A custom configuration document (file) is supplied in one
of two ways
– psrun option “-c filename”

– PS_HWPC_CONFIG environment variable, which can be set to
filename

• Creating new configuration files is easy, and can be done
with either a text editor or the tool “psconfig”

Example Configuration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

92

• You can edit this file like any text file
• The XML document root element “ps_hwpc_eventlist”

indicates this configuration is to be used for aggregate
counting (not profiling)

<?xml version="1.0" encoding="UTF-8" ?>

•<ps_hwpc_eventlist class="PAPI">

<ps_hwpc_event type="preset" name="PAPI_BR_MSP" />

<ps_hwpc_event type="preset" name="PAPI_BR_PRC" />

<ps_hwpc_event type="preset" name="PAPI_BR_TKN" />

<ps_hwpc_event type="preset" name="PAPI_FP_INS" />

<ps_hwpc_event type="preset" name="PAPI_TOT_CYC" />

<ps_hwpc_event type="preset" name="PAPI_TOT_INS" />

<ps_hwpc_event type="preset" name="PAPI_L1_DCA" />

<ps_hwpc_event type="preset" name="PAPI_L1_DCM" />

<ps_hwpc_event type="preset" name="PAPI_L1_TCM" />

<ps_hwpc_event type="preset" name="PAPI_L2_DCA" />

<ps_hwpc_event type="preset" name="PAPI_L2_DCM" />

</ps_hwpc_eventlist>

Using Processor “Native Events”

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

93

• It’s easy to work with native events in addition to PAPI
standard events by modifying the configuration file slightly.

• Instead of using the XML attributes type=“preset”
name=“PAPI_EVENTNAME”, use the attribute type=“native”
and enclose the event name as the content of the element

• Can be used with profiling configurations

<ps_hwpc_event type=“native”>NOPS_RETIRED</ps_hwpc_event>

<ps_hwpc_event type=“native”>BACK_END_BUBBLE_ALL</ps_hwpc_event>

Configuring for Profiling

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

94

• Setting up for profiling is similar to counting - all you have to do is
modify the XML configuration document:

• The XML document “root element” is now <ps_hwpc_profile>, not
<ps_hwpc_eventlist>

• You can supply an optional “threshold”, or sampling rate

• Only one event is allowed in the document

• psconfig does not yet support profiling, need to edit by hand

<?xml version="1.0" encoding="UTF-8" ?>

<ps_hwpc_profile class="PAPI">

<ps_hwpc_event type="preset" name="PAPI_BR_MSP“

threshold="100000" />

</ps_hwpc_profile>

psconfig: Graphical Configuration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

95

• Graphical user interface

makes it easy to select

events

• Can read in or write out

valid XML documents to

be used by psrun

• Provides text description

of events with mouse

click

• Searching capabilities

• Profiling not yet

supported

Searching Events with psconfig

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

96

• Selecting “Edit”, “Search

Events…” brings up a

window like this that

allows you to search

events for keywords

• Can restrict the search

to only events available

on your computer

• The search is based on

the event‟s description,

not its standard event

name (PAPI_TOT_CYC)

Browsing Predefined Event Configurations

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

97

• Selecting “File”, “Default Hardware Event Configurations…” brings up the
directory with pre-selected configuration documents

• Opening one of them will show you which events will be used

• You can base custom configuration files using these as a start

psrun: Advanced Use

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

98

• psrun supports a few options that can be useful in working
with shared or distributed memory programs:

• -p / --pthreads

- uses a POSIX thread-aware variant of the library that captures thread
creation and measures performance of each, depositing the results in
an XML document with the thread ID embedded:

• -f / --fork

- monitors child processes that are created. Not enabled by default.

• -a / --annotate

- inserts an XML “element” with a user-supplied annotation (text)

psprocess: Advanced Use

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

99

• psprocess is meant to be a “generic” processor for different XML document types
generated by PerfSuite. For hardware counting, the most common type is
<hwpcreport>

• Individual documents can be combined into a “multi-document” with the option –c /
--combine. With hardware counter data, psprocess summarizes the information
contained in them with descriptive statistics (mean, max, min, sum, stddev)

• -s LIST is a very useful option to be used with profiling runs. LIST is a comma-separated
list of modules, files, functions, lines used to limit the amount of output

• -t THRESHOLD is also helpful in limiting the output of profiling runs. THRESHOLD is a
number that specifies the minimum % of samples required for a given entry to be
displayed. Example: “-t 2” means “don’t show me anything that didn’t account for at
least 2% of the samples collected”

• psprocess help output (“-h”) lists all available options and types

psprocess: User-defined Metrics

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

100

• psprocess allows the creation of user-defined metrics.

• User-defined metrics are stored in a file of your choice that contains
expression templates (reminiscent of MathML)

• Select via PS_HWPC_METRICS env. variable or “psprocess –m”

<?xml version="1.0" encoding="UTF-8" ?>

<psmetrics class="hwpc">

<metric namespace="PAPI" type="ratio">

<name>PS_RATIO_GINS_CYC</name>

<description lang="en_US">Graduated instructions per cycle</description>

<definition>

<apply>

<divide>

<ci>PAPI_TOT_INS</ci>

<ci>PAPI_TOT_CYC</ci>

</divide>

</apply>

</definition>

</metric>

</psmetrics>

PerfSuite Environment Variables

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

101

• PS_HWPC: “off” or “on”, controls whether measurement takes place at all
(for API)

• PS_HWPC_CONFIG: set to the name of the XML event file created with
psconfig or “by hand”. A default is used if not set

• PS_HWPC_FILE: controls the prefix of the XML output document (default is
the name of the command being measured)

• PS_HWPC_ANNOTATION - adds an arbitrary “note” to the XML output
• PS_HWPC_DOMAIN: controls whether counting at user or system level (or

both)
• PS_HWPC_THRESHOLD: sets threshold for profiling
• PS_HWPC_FORMAT: “text” or “xml”, controls whether output is in an XML

document or plain text (similar to a psprocess report)
• PSRUN_DOFORK: if set (to anything), monitors child processes also

“psrun –h” will show a complete listing of recognized variables

PerfSuite’s XML Document Hierarchy

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

102

• The basic per-thread XML document that is created by
PerfSuite is called an “hwpcreport”
– These are in either “counting” or “profiling” mode

• Logical collections of the basic documents can be grouped
together using the “-c” (“combine”) option to psprocess.
The result is called a “multihwpcreport”.
– This is where the notion of a parallel run of arbitrary scale enters

and can be applied to shared- or distributed-memory runs
– Subsequent processing with psprocess recognizes these “multi”

documents and provides different statistics, more appropriate
for parallel runs

• The basic concept is extensible to further logical collections
of one or more runs, threads, tasks, etc

Example: Parallel CFD Kernel

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

103

• ASPCG (Additive Schwarz Preconditioned
Conjugate Gradient)

• Courtesy Prof. Danesh Tafti (Virginia Tech)

• Fortran77 kernel with OpenMP directives
closely approximates the per-node
performance of a full-featured parallel
computational fluid dynamics application
(GenIDLEST)

Generating Overall Event Counts

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

104

• All that is necessary is to ensure that your
application is linked dynamically

• psrun, when configured with PAPI support,
collects aggregate counting data over the
entire run by default

• The option “-p” requests per-thread
collection (for POSIX thread programs)

• A successful run will result in N+1 XML
documents, which are input to psprocess

Data Collection with 1 and 2 Threads

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

105

$ OMP_NUM_THREADS=1 time psrun -p ./aspcg

L2 norm in CG after 25 Iterations is 2.7472E-02

flop is 13199785984.0000

Time spent in matxvec is 0.2357E+02 with dtime

Approximate performance based on dtime is = 0.56002E+03 MFLOPS/s

23.58user 0.44system 0:24.33elapsed 98%CPU

$ ls aspcg*.xml

aspcg.0.6461.twinpeaks.xml aspcg.1.6461.twinpeaks.xml

$ OMP_NUM_THREADS=2 time psrun -p ./aspcg

27.82user 0.59system 0:15.09elapsed 188%CPU

$ ls aspcg*.xml

aspcg.0.6461.twinpeaks.xml aspcg.1.6578.twinpeaks.xml

aspcg.0.6578.twinpeaks.xml aspcg.2.6578.twinpeaks.xml

aspcg.1.6461.twinpeaks.xml

Note: All Threads are Tracked

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

106

• Some OpenMP compilers (e.g., Intel) may
create an additional “monitor thread” that is
probably not relevant to your analysis

• Which thread is usually apparent from the
output of psprocess:

$ psprocess aspcg.1.6461.twinpeaks.xml

MFLOPS (wall clock)............ 0.000

MIPS (wall clock).............. 0.000

CPU time (seconds)............. 0.000

Wall clock time (seconds)...... 24.081

% CPU utilization.............. 0.000

$ psprocess aspcg.0.6461.twinpeaks.xml

MFLOPS (wall clock)............ 526.521

MIPS (wall clock).............. 1463.966

CPU time (seconds)............. 22.803

Wall clock time (seconds)...... 24.101

% CPU utilization.............. 94.614

Profiling with 2 Threads

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

107

• Supplying -C requests that the PerfSuite standard configuration file directory is
searched. “papi_profile_cycles.xml” is installed there by default, and directs
profiling using the PAPI event PAPI_TOT_CYC

• To avoid proliferation of similarly-named output documents, consider using the -o
FILENAME option to the psrun command line (not done above)

• By default, processing a profile will send a text-based profile report to standard
output

• You can instead request an XML-based output document be created by using the
psprocess option -x. These documents can be used by other tools such as
TAU’s Paraprof visualizer:

$ paraprof prof-t0.xml prof-t1.xml prof-t2.xml

$ psrun –p –C –c papi_profile_cycles.xml ./aspcg

$ ls aspcg*.xml

aspcg.0.6461.twinpeaks.xml aspcg.1.6578.twinpeaks.xml

aspcg.0.6578.twinpeaks.xml aspcg.1.6844.twinpeaks.xml

aspcg.0.6844.twinpeaks.xml aspcg.2.6578.twinpeaks.xml

aspcg.1.6461.twinpeaks.xml aspcg.2.6844.twinpeaks.xml

$ psprocess aspcg.0.6844.twinpeaks.xml

$ psprocess –x aspcg.0.6844.twinpeaks.xml

psprocess Text-Based Profiles

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

108

Profile Information
==
============
Class : PAPI
Version : 3.6.2
Event : PAPI_TOT_CYC (Total cycles)
Period : 100000
Samples : 200471
Domain : user
Run Time : 27.19 (seconds)
Min Self % : (all)

Module Summary
--
Samples Self % Total % Module

186068 92.82% 92.82% /home/rkufrin/apps/aspcg/aspcg
14182 7.07% 99.89% /opt/intel/cc/9.0/lib/libguide.so

187 0.09% 99.98% /lib/ld-2.3.6.so
18 0.01% 99.99% /lib/tls/libc-2.3.6.so
15 0.01% 100.00% /lib/tls/libpthread-2.3.6.so
1 0.00% 100.00% /tmp/perfsuite/lib/libpsrun_r.so.0.0.1

File Summary
--
Samples Self % Total % File

154346 76.99% 76.99% /home/rkufrin/apps/aspcg/pc_jac2d_blk3.f
14506 7.24% 84.23% /home/rkufrin/apps/aspcg/cg3_blk.f
14505 7.24% 91.46% ??
10185 5.08% 96.54% /home/rkufrin/apps/aspcg/matxvec2d_blk3.f
3042 1.52% 98.06% /home/rkufrin/apps/aspcg/dot_prod2d_blk3.f
2366 1.18% 99.24% /home/rkufrin/apps/aspcg/add_exchange2d_blk3.f
834 0.42% 99.66% /home/rkufrin/apps/aspcg/main3.f
687 0.34% 100.00% /home/rkufrin/apps/aspcg/cs_jac2d_blk3.f

Text-based profiles, cont’d

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

109

Function Summary

--

Samples Self % Total % Function

154346 76.99% 76.99% pc_jac2d_blk3

14506 7.24% 84.23% cg3_blk

10185 5.08% 89.31% matxvec2d_blk3

6937 3.46% 92.77% __kmp_x86_pause

4711 2.35% 95.12% __kmp_wait_sleep

3042 1.52% 96.64% dot_prod2d_blk3

2366 1.18% 97.82% add_exchange2d_blk3

Function:File:Line Summary

--

Samples Self % Total % Function:File:Line

39063 19.49% 19.49% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20

24134 12.04% 31.52% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19

15626 7.79% 39.32% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21

15028 7.50% 46.82% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33

13878 6.92% 53.74% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24

11880 5.93% 59.66% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31

8896 4.44% 64.10% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22

7863 3.92% 68.02% matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19

7145 3.56% 71.59% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32

PerfSuite Profiles with ParaProf and Cube3

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

110

TAU’s Paraprof can display PerfSuite profiles
after being mapped to source and stored as
XML (psprocess –x)

Development version of psprocess produces
Cube XML files directly

PerfSuite Library Access (API)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

111

• All of the functionality is also available from within
your program (C/C++/Fortran) through a small API

• Same XML documents are read, same XML documents
are written, small additional functionality

• Why would you want to use this?
– Primarily to gain finer control over where measurements

are taken in your program. For example, you might defer
measurement until program initialization has completed

• For complex uses, you are probably better off using an
“industrial-strength” performance library

• The intent of the API is to “abstract out” the process of
performance measurement to a very high level

libperfsuite: Core Library

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

112

• This library is available regardless of the presence of hardware counter
support

• Small number of useful routines callable from either C or FORTRAN (use
“PSF_” instead of “ps_” with FORTRAN)

int ps_cpuspeed (double *mhz);

int ps_cpuusage (pid_t pid, ps_time_t *utime,
ps_time_t *stime);

int ps_dmemusage (float *total_mb, float *used_mb,
float *free_mb);

int ps_memusage (pid_t pid, float *vsize_mb,
float *rss_mb);

int ps_procstat (pid_t pid,
ps_procstat_t *p);

int ps_rtc (unsigned long long *rtcval);

int ps_rtcinit (void);

const char *ps_strerror (int code);

• #include <perfsuite.h> (or “fperfsuite.h”)

libpshwpc: Performance Collection API

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

113

• Call “init” once, call “start”, “read”
and “suspend” as many times as you
like. Call “stop” (supplying a file
name prefix of your choice) to get
the performance data XML
document.

• Optionally, call “shutdown”.

• Example programs demonstrating
use are installed in PerfSuite
“examples” subdirectory.

• Additional routines
ps_hwpc_numevents() and
ps_hwpc_eventnames() allow
querying current configuration

C / C++
ps_hwpc_init (void)

ps_hwpc_start (void)

ps_hwpc_read (long long *values)

ps_hwpc_suspend (void)

ps_hwpc_stop (char *prefix)

ps_hwpc_shutdown (void)

Fortran
call psf_hwpc_init (ierr)

call psf_hwpc_start (ierr)

call psf_hwpc_read (integer*8

values,ierr)

call psf_hwpc_suspend (ierr)

call psf_hwpc_stop (prefix, ierr)

call psf_hwpc_shutdown (ierr)

FORTRAN API Example

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

114

include 'fperfsuite.h'

call PSF_hwpc_init(ierr)

call PSF_hwpc_start(ierr)

do j = 1, n

do i = 1, m

do k = 1, l

c(i,j) = c(i,j) + a(i,k)*b(k,j)

end do

end do

end do

call PSF_hwpc_stop('perf', ierr)

call PSF_hwpc_shutdown(ierr)

% ifort -c matmult.f -I/opt/perfsuite/include

% ifort matmult.o -L /usr/apps/tools/perfsuite/lib/intel

-L/usr/apps/tools/papi/lib -lpshwpc -lperfsuite -lpapi

PerfSuite XML Java API

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

115

• Provides programmatic access to the information
contained in PerfSuite reports through Java.

• Includes detailed Javadoc documentation that is
installed in $PREFIX/share/perfsuite/doc/javadoc

• Currently supports HWPC report (“count” and
“profile” mode), resource report and multi-HWPC
reports; parses all elements in them and places
the data in Java objects that can be accessed via
“getter” methods.

$ JARFILE=$PREFIX/share/perfsuite/javalib/perfsuite.jar

$ javac -classpath $JARFILE MyClass.java

$ java –classpath $JARFILE:. MyClass <arguments>

Example Use of PS XML Java API

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

116

import java.util.*;

import org.perfsuite.xml.*;

// The “newInstance” method is used to parse any supported type of XML

// document that PerfSuite generates. It accepts the name of the

// file to parse and a flag to indicate whether XML validation is done.

PS_Report report0 = PS_Report.newInstance (filename, false);

// Use “instanceof” to determine the type of report that was parsed.

// This example shows how to handle a report with event totals.

if (report0 instanceof PS_HwpcCountingReport) {

PS_HwpcCountingReport report = (PS_HwpcCountingReport) report0;

Map<String, PS_HwpcEvent> eventMap = report.getEvents();

for (Iterator it = eventMap.entrySet().iterator(); it.hasNext();) {

Map.Entry entry = (Map.Entry) it.next();

PS_HwpcEvent event = (PS_HwpcEvent) entry.getValue();

System.out.println ("Event: " + event.getName() +

", Count: " + event.getCount() +

", Type: " + event.getType() +

", Derived: " + event.getDerived());

}

}

Issues at Higher Scales of Parallelism

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

117

• How well can PerfSuite be expected to scale to extreme levels of
parallelism?
– All monitoring is contained within the context of a single

core/processor/thread. No communication or synchronization
required between threads as measurement proceeds, so not
impacted.

– Currently, results/output are written to local disk files; PerfSuite
enforces serialized output from multithreaded programs to minimize
filesystem contention. Not an issue to date, but warrants rethinking.

– PC-to-source code mapping (for profiling runs) is currently done
through the psprocess command, and can consume significant times
for large programs at high levels of parallelism.

• While PerfSuite has been used successfully on core counts of
hundreds to thousands, further work needs to be done to improve
existing barriers to scalability. These issues are a key piece of work
ongoing under the POINT collaboration.

Recent and Upcoming in PerfSuite

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

118

• Current stable release is version 0.6.2
– Provides nearly all of the features covered in this presentation

• Version 1.0 is now in alpha release state
– Alpha releases are for incorporating new features, major modifications
– Much new functionality and reengineering on the roadmap:

• In current alpha:
– New Java API for user access to PerfSuite XML documents (do what you like with the data

PerfSuite collects).
– New support for Cube3 output.

• For later release in alpha cycle:
– Extending the ability to collect performance data from traditional programming

languages to Java
– Enhanced profiling capabilities, including substantial reduction in memory requirements

for profiling runs
– New Java-based implementation of psprocess
– Improved scalability of profiling output and post-processing for parallel runs

– Current and potential users’ feedback, bug reports, encouraged

For More Information and Downloads

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

119

• PerfSuite web sites:

– http://perfsuite.ncsa.uiuc.edu/

– http://www.sf.net/projects/perfsuite/

http://www.fz-juelich.de/zam/kojak/opari/
http://www.dyninst.org/

TAU PERFORMANCE SYSTEM

Sameer Shende
Alan Morris, Wyatt Spear, Scott Biersdorff
Performance Research Lab

Allen D. Malony, Kevin Huck, Aroon Nataraj
Department of Computer and Information Science
University of Oregon

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

TAU Performance System®

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

121

• Tuning and Analysis Utilities (16+ year project)

• Performance problem solving framework for HPC
– Integrated, scalable, flexible, portable

– Target all parallel programming / execution paradigms

• Integrated performance toolkit (open source)
– Instrumentation, measurement, analysis, visualization

– Widely-ported performance profiling / tracing system

– Performance data management and data mining

• Broad application use (NSF, DOE, DOD, …)

TAU Performance System Components

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

122

TAU Architecture Program Analysis

Parallel Profile Analysis

P
D

T
P

er
fD

M
F

P
a

ra
P

ro
f

Performance Data Mining

Performance Monitoring

T
A

U
o

v
er

S
u

p
er

m
o

n

PerfExplorer

Building Bridges to Other Tools

TAU Instrumentation / Measurement

Direct Performance Observation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

125

• Execution actions of interest exposed as events
– In general, actions reflect some execution state

• presence at a code location or change in data
• occurrence in parallelism context (thread of execution)

– Events encode actions for performance system to observe
• Observation is direct

– Direct instrumentation of program (system) code (probes)
– Instrumentation invokes performance measurement
– Event measurement: performance data, meta-data,

context
• Performance experiment

– Actual events + performance measurements
• Contrast with (indirect) event-based sampling

TAU Instrumentation Approach

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

126

• Support for standard program events
– Routines, classes and templates
– Statement-level blocks
– Begin/End events (Interval events)

• Support for user-defined events
– Begin/End events specified by user
– Atomic events (e.g., size of memory allocated/freed)
– Flexible selection of event statistics

• Provides static events and dynamic events
• Enables “semantic” mapping
• Specification of event groups (aggregation, selection)
• Instrumentation optimization

TAU Event Interface

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

127

• Events have a type, a group association, and a name
• TAU events names are character strings

– Powerful way to encode event information
– Inefficient way to communicate each event occurrence

• TAU maps a new event name to an event ID
– Done when event is first encountered (get event handle)
– Event ID is used for subsequent event occurrences
– Assigning a uniform event ID a priori is problematic

• A new event is identified by a new event name in TAU
– Can create new event names at runtime
– Allows for dynamic events (TAU renames events)
– Allows for context-base, parameter-based, phase events

TAU Instrumentation Mechanisms

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

128

• Source code
– Manual (TAU API, TAU component API)
– Automatic (robust)

• C, C++, F77/90/95 (Program Database Toolkit (PDT))
• OpenMP (directive rewriting (Opari), POMP2 spec)
• Library header wrapping

• Object code
– Pre-instrumented libraries (e.g., MPI using PMPI)
– Statically- and dynamically-linked (with LD_PRELOAD)

• Executable code
– Binary and dynamic instrumentation (Dyninst)
– Virtual machine instrumentation (e.g., Java using JVMPI)

• TAU_COMPILER to automate instrumentation process

Automatic Source-level Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

129

Program Database Toolkit (PDT)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

130

Application

/ Library

C / C++

parser

Fortran parser

F77/90/95

C / C++

IL analyzer

Fortran

IL analyzer

Program

Database

Files

IL IL

DUCTAPE
TAU

instrumentor
Automatic source

instrumentation

.

.

.

MPI Wrapper Interposition Library

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

131

• Uses standard MPI Profiling Interface
– Provides name shifted interface

• MPI_Send = PMPI_Send

• Weak bindings

• Create TAU instrumented MPI library
– Interpose between MPI and TAU

– Done during program link
• -lmpi replaced by –lTauMpi –lpmpi –lmpi

– No change to the source code!

– Just re-link application to generate performance data

MPI Shared Library Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

132

• Interpose the MPI wrapper library for applications
that have already been compiled
– Avoid re-compilation or re-linking

• Requires shared library MPI
– Uses LD_PRELOAD for Linux
– On AIX use MPI_EUILIB / MPI_EUILIBPATH
– Does not work on XT3

• Approach will work with other shared libraries
• Use TAU tauex

– % mpirun -np 4 tauex a.out

Selective Instrumentation File

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

133

• Specify a list of events to exclude or include
• # is a wildcard in a routine name

BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM
END_EXCLUDE_LIST
BEGIN_INCLUDE_LIST
int main(int, char **)
F1
F3
END_INCLUDE_LIST

Selective Instrumentation File

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

134

• Optionally specify a list of files

• * and ? may be used as wildcard characters
BEGIN_FILE_EXCLUDE_LIST

f*.f90

Foo?.cpp

END_FILE_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

main.cpp

foo.f90

END_FILE_INCLUDE_LIST

Selective Instrumentation File

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

135

• User instrumentation commands
– Placed in INSTRUMENT section
– Routine entry/exit
– Arbitrary code insertion
– Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#”
io routine=“matrix#”
*static/dynamic+ phase routine=“MULTIPLY”
dynamic *phase/timer+ name=“foo” file=“foo.cpp” line=22 to line=35
file=“foo.f90” line = 123 code = " print *, \" Inside foo\""
exit routine = “int foo()” code = "cout <<\"exiting foo\"<<endl;”
END_INSTRUMENT_SECTION

TAU Measurement Approach

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

136

• Portable and scalable parallel profiling solution
– Multiple profiling types and options
– Event selection and control (enabling/disabling, throttling)
– Online profile access and sampling
– Online performance profile overhead compensation

• Portable and scalable parallel tracing solution
– Trace translation to OTF, EPILOG, Paraver, and SLOG2
– Trace streams (OTF) and hierarchical trace merging

• Robust timing and hardware performance support
• Multiple counters (hardware, user-defined, system)
• Performance measurement of I/O and Linux kernel

TAU Measurement Mechanisms

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

137

• Parallel profiling
– Function-level, block-level, statement-level
– Supports user-defined events and mapping events
– Support for flat, callgraph/callpath, phase profiling
– Support for parameter and context profiling
– Support for tracking I/O and memory (library wrappers)
– Parallel profile stored (dumped, shapshot) during

execution

• Tracing
– All profile-level events
– Inter-process communication events
– Inclusion of multiple counter data in traced events

Types of Parallel Performance Profiling

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

138

• Flat profiles
– Metric (e.g., time) spent in an event (callgraph nodes)
– Exclusive/inclusive, # of calls, child calls

• Callpath profiles (Calldepth profiles)
– Time spent along a calling path (edges in callgraph)
– “main=> f1 => f2 => MPI_Send” (event name)
– TAU_CALLPATH_DEPTH environment variable

• Phase profiles
– Flat profiles under a phase (nested phases are

allowed)
– Default “main” phase
– Supports static or dynamic (per-iteration) phases

TAU Analysis

Performance Analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

140

• Analysis of parallel profile and trace measurement
• Parallel profile analysis (ParaProf)

– Java-based analysis and visualization tool
– Support for large-scale parallel profiles

• Performance data management framework (PerfDMF)
• Parallel trace analysis

– Translation to VTF (V3.0), EPILOG, OTF formats
– Integration with Vampir / Vampir Server (TU Dresden)
– Profile generation from trace data

• Online parallel analysis and visualization
• Integration with CUBE browser (Scalasca, UTK / FZJ)

ParaProf Profile Analysis Framework

Performance Data Management

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

142

• Provide an open, flexible framework to support
common data management tasks
– Foster multi-experiment performance evaluation

• Extensible toolkit to promote integration and reuse
across available performance tools (PerfDMF)
– Originally designed to address critical TAU requirements
– Supported profile formats:

TAU, CUBE (Scalasca), HPC Toolkit (Rice), HPM Toolkit (IBM), gprof,
mpiP, psrun (PerfSuite), Open|SpeedShop, …

– Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

– Profile query and analysis API

• Reference implementation for PERI-DB project

PerfDMF Architecture

Metadata Collection

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

144

• Integration of XML metadata for each parallel profile

• Three ways to incorporate metadata
– Measured hardware/system information (TAU, PERI-DB)

• CPU speed, memory in GB, MPI node IDs, …

– Application instrumentation (application-specific)
• TAU_METADATA() used to insert any name/value pair

• Application parameters, input data, domain decomposition

– PerfDMF data management tools can incorporate an XML
file of additional metadata

• Compiler flags, submission scripts, input files, …

• Metadata can be imported from / exported to PERI-DB

Performance Data Mining / Analytics

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

145

• Conduct systematic and scalable analysis process
– Multi-experiment performance analysis
– Support automation, collaboration, and reuse

• Performance knowledge discovery framework
– Data mining analysis applied to parallel performance data

• comparative, clustering, correlation, dimension reduction, …

– Use the existing TAU infrastructure

• PerfExplorer v1 performance data mining framework
– Multiple experiments and parametric studies
– Integrate available statistics and data mining packages

• Weka, R, Matlab / Octave

– Apply data mining operations in interactive enviroment

How to explain performance?

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

146

• Should not just redescribe the performance results
• Should explain performance phenomena

– What are the causes for performance observed?
– What are the factors and how do they interrelate?
– Performance analytics, forensics, and decision support

• Need to add knowledge to do more intelligent things
– Automated analysis needs good informed feedback

• iterative tuning, performance regression testing

– Performance model generation requires interpretation

• We need better methods and tools for
– Integrating meta-information
– Knowledge-based performance problem solving

Role of Metadata and Knowledge Role

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

147

Performance Knowledge

Source

Code

Build

Environment

Run

Environment

Performance Result

Execution

You have to

capture these...

...to understand

this

Application Machine

Performance

Problems

Context Knowledge

PerfExplorer v2 – Requirements

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

148

• Component-based analysis process
– Analysis operations implemented as modules
– Linked together in analysis process and workflow

• Scripting
– Provides process/workflow development and automation

• Metadata input, management, and access
• Inference engine

– Reasoning about causes of performance phenomena
– Analysis knowledge captured in expert rules

• Persistence of intermediate analysis results
• Provenance

– Provides historical record of analysis results

PerfExplorer v2 Architecture

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

149

Parallel Profile Analysis – pprof

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

150

Parallel Profile Analysis – ParaProf

HPMToolkit

MpiP

TAU

Raw files

PerfDMF

managed

(database)

Metadata

Application

Experiment

Trial

Metadata for Each Experiment

Multiple PerfDMF DBs

ParaProf – Flat Profile

8K processorsnode, context, thread

Miranda

 hydrodynamics

 Fortran + MPI

 LLNL BG/L

ParaProf – Stacked View

ParaProf – Callpath Profile

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Flash

 thermonuclear

flashes

 Fortran + MPI

 Argonne

ParaProf – Scalable Histogram

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

156

8k processors 16k processors

ParaProf – 3D View (Full Profile)

256 processors

Matrix multiplication

ParaProf – 3D View (Full Profile)

16k processors

Miranda

ParaProf – 3D Scatterplot

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

159

• Each point is a “thread” of execution

• A total of four metrics
shown in relation

• ParaProf’s
visualization
library

– JOGL

• Miranda

Performance Mapping

• Example: Particles distributed on cube surface
Particle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all faces of the cube */

for (int face=0, last=0; face < 6; face++){

/* particles on this face */

int particles_on_this_face = num(face);

for (int i=last; i < particles_on_this_face; i++) {

/* particle properties are a function of face */

P[i] = ... f(face);

...

}

last+= particles_on_this_face;

}

}

Performance Mapping

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

161

• How much time (flops) spent processing face i particles?
• What is the distribution of performance among faces?

int ProcessParticle(Particle *p) {

/* perform some computation on p */

}

int main() {

GenerateParticles();

/* create a list of particles */

for (int i = 0; i < N; i++)

/* iterates over the list */

ProcessParticle(P[i]);

}

engine

work

packets

No Mapping versus Mapping

• Typical performance tools
report performance with
respect to routines

• Does not provide support
for mapping

• TAU’s performance
mapping can observe
performance with respect
to scientist’s
programming and
problem abstractions

TAU (no mapping) TAU (w/ mapping)

NAS BT – Flat Profile

How is MPI_Wait()

distributed relative to

solver direction?

Application routine names

reflect phase semantics

NAS BT – Phase Profile
Main phase shows nested phases and immediate events

Phase Profiling of HW Counters

• GTC particle-in-cell simulation of fusion turbulence
• Phases assigned to

iterations
• Poor temporal locality for

one important data
• Automatically generated

by PE2 python script

increasing phase

execution time

decreasing

flops rate

declining cache

performance

Profile Snapshots in ParaProf
• Profile snapshots are parallel profiles recorded at runtime
• Shows performance profile dynamics (all types allowed)

Initialization

Checkpointing

Finalization

Profile Snapshot Views

• Only show main loop • Percentage breakdown

167

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Snapshot Replay in ParaProf

All windows dynamically update

PerfExplorer – Runtime Breakdown

169

MPI_Waitall

WRITE_SAVEFILE

PerfExplorer – Relative Comparisons

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

170

• Total execution time
• Timesteps per second
• Relative efficiency
• Relative efficiency per event
• Relative speedup
• Relative speedup per event
• Group fraction of total
• Runtime breakdown
• Correlate events with total runtime
• Relative efficiency per phase
• Relative speedup per phase
• Distribution visualizations

PerfExplorer – Correlation Analysis

Data: FLASH on BGL(LLNL), 64 nodes

Strong negative linear correlation between

CALC_CUT_BLOCK_CONTRIBUTIONS

and MPI_Barrier

PerfExplorer – Correlation Analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

172

• -0.995 indicates
strong, negative
relationship

• As CALC_CUT_
BLOCK_CONTRIBUTIO
NS() increases in
execution time,
MPI_Barrier()
decreases

PerfExplorer – Cluster Analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

173

PerfExplorer – Cluster Analysis

• Four significant events automatically selected

• Clusters and correlations are visible

PerfExplorer – Performance Regression

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

175

Other Projects in TAU

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

176

• TAU Portal
– Support collaborative performance study

• Kernel-level system measurements (KTAU)
– Application to OS noise analysis and I/O system analysis

• TAU performance monitoring
– TAUoverSupermon and TAUoverMRNet

• PerfExplorer integration and expert-based analysis
– OpenUH compiler optimizations
– Computational quality of service in CCA

• Eclipse CDT and PTP integration
• Performance tools integration (NSF POINT project)

Using TAU

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

177

• Install TAU
– % configure [options]; make clean install

• Modify application makefile and choose TAU configuration
– Select TAU’s stub makefile
– Change name of compiler in makefile

• Set environment variables
– Directory where profiles/traces are to be stored/counter

selection
– TAU options

• Execute application
– % mpirun –np <procs> a.out;

• Analyze performance data
– paraprof, vampir, pprof, paraver …

Application Build Environment

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

178

• Minimize impact on user’s application build procedures
• Handle parsing, instrumentation, compilation, linking
• Dealing with Makefiles

– Minimal change to application Makefile
– Avoid changing compilation rules in application Makefile
– No explicit inclusion of rules for process stages

• Some applications do not use Makefiles
– Facilitate integration in whatever procedures used

• Two techniques:
– TAU shell scripts (tau_<compiler>.sh)

• Invokes all PDT parser, TAU instrumenter, and compiler

– TAU_COMPILER

Configuring TAU

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

179

• TAU can measure several metrics with profiling
and tracing approaches

• Different tools can also be invoked to instrument
programs for TAU measurement

• Each configuration of TAU produces a
measurement library for an architecture

• Each measurement configuration of TAU also
creates a corresponding stub makefile that can be
used to compile programs

• Typically configure multiple measurement
libraries

TAU Measurement System Configuration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

180

• configure [OPTIONS]
– {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
– -pdt=<dir> Specify location of PDT
– -opari=<dir> Specify location of Opari OpenMP tool
– -papi=<dir> Specify location of PAPI
– -vampirtrace=<dir> Specify location of VampirTrace
– -mpi[inc/lib]=<dir> Specify MPI library instrumentation
– -dyninst=<dir> Specify location of DynInst Package
– -shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
– -python[inc/lib]=<dir> Specify Python instrumentation
– -tag=<name> Specify a unique configuration name
– -epilog=<dir> Specify location of EPILOG
– -slog2 Build SLOG2/Jumpshot tracing package
– -otf=<dir> Specify location of OTF trace package
– -arch=<architecture> Specify architecture explicitly

(bgl, xt3,ibm64,ibm64linux…)
– {-pthread, -sproc} Use pthread or SGI sproc threads
– -openmp Use OpenMP threads
– -jdk=<dir> Specify Java instrumentation (JDK)
– -fortran=[vendor] Specify Fortran compiler

TAU Measurement System Configuration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

181

• configure [OPTIONS]
– -TRACE Generate binary TAU traces
– -PROFILE (default) Generate profiles (summary)
– -PROFILECALLPATH Generate call path profiles
– -PROFILEPHASE Generate phase based profiles
– -PROFILEMEMORY Track heap memory for each routine
– -PROFILEHEADROOM Track memory headroom to grow
– -MULTIPLECOUNTERS Use hardware counters + time
– -COMPENSATE Compensate timer overhead
– -CPUTIME Use usertime+system time
– -PAPIWALLCLOCK Use PAPI’s wallclock time
– -PAPIVIRTUAL Use PAPI’s process virtual time
– -SGITIMERS Use fast IRIX timers
– -LINUXTIMERS Use fast x86 Linux timers

TAU Configuration – Examples

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

182

• Configure using PDT and MPI for x86_64 Linux
./configure –pdt=/usr/pkgs/pkgs/pdtoolkit-3.14

-mpiinc=/usr/pkgs/mpich/include -mpilib=/usr/pkgs/mpich/lib
-mpilibrary=‘-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl’

• Use PAPI counters (one or more) with C/C++/F90
automatic instrumentation for Cray CNL. Also instrument
the MPI library. Use PGI compilers.
./configure -arch=craycnl -cc=cc -c++=CC -fortran=pgi -papi=/opt/xt-

tools/papi/3.2.1 -mpi -MULTIPLECOUNTERS; make clean install

• Stub makefiles
/usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
/usr/pkgs/tau/x86_64/lib/Makefile.tau-multiplecounters-

mpi-papi-pdt-pgi

Stub Makefiles Configuration Parameters

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

183

• TAU scripts use stub makefiles to select performance measurements
• Variables:

– TAU_CXX Specify the C++ compiler used by TAU
– TAU_CC, TAU_F90 Specify the C, F90 compilers
– TAU_DEFS Defines used by TAU (add to CFLAGS)
– TAU_LDFLAGS Linker options (add to LDFLAGS)
– TAU_INCLUDE Header files include path (add to CFLAGS)
– TAU_LIBS Statically linked TAU library (add to LIBS)
– TAU_SHLIBS Dynamically linked TAU library
– TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
– TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
– TAU_FORTRANLIBS Must be linked in with C++ linker for F90
– TAU_CXXLIBS Must be linked in with F90 linker
– TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
– TAU_DISABLE TAU’s dummy F90 stub library
– TAU_COMPILER Instrument using tau_compiler.sh script

TAU Measurement Configuration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

184

• % cd /opt/tau-2.18/x86_64/lib; ls Makefile.*
– Makefile.tau-pdt
– Makefile.tau-mpi-pdt
– Makefile.tau-callpath-mpi-pdt
– Makefile.tau-mpi-pdt-trace
– Makefile.tau-mpi-compensate-pdt
– Makefile.tau-multiplecounters-mpi-papi-pdt
– Makefile.tau-multiplecounters-mpi-papi-pdt-trace
– Makefile.tau-pthread-pdt…

• For an MPI+F90 application, you may want to start with:
– Makefile.tau-mpi-pdt
– Supports MPI instrumentation & PDT for automatic source

instrumentation
• % setenv TAU_MAKEFILE

/opt/tau-2.18/x86_64/lib/Makefile.tau-mpi-pdt

-PROFILE Option

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

185

• Generates flat profiles

– One for each MPI process

– It is the default option.

• Uses wallclock time

– gettimeofday() sys call

• Calculates exclusive, inclusive time spent in
each timer and number of calls

Generating a Flat Profile with MPI

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

186

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64

/lib/Makefile.tau-mpi-pdt

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Generating a Loop-level Profile

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

187

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64

/lib/Makefile.tau-mpi-pdt

% setenv TAU_OPTIONS „-optTauSelectFile=select.tau –optVerbose‟

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Compiler-based Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

188

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-mpi

% setenv TAU_OPTIONS „-optCompInst –optVerbose‟

% % set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

-MULTIPLECOUNTERS Option

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

189

• Instead of one metric, profile or trace with more than one metric
– Set environment variables COUNTER[1-25] to specify the metric

• % setenv COUNTER1 GET_TIME_OF_DAY
• % setenv COUNTER2 PAPI_L2_DCM
• % setenv COUNTER3 PAPI_FP_OPS
• % setenv COUNTER4 PAPI_NATIVE_<native_event>
• % setenv COUNTER5 P_WALL_CLOCK_TIME …

• When used with –TRACE option, the first counter must be
GET_TIME_OF_DAY

• % setenv COUNTER1 GET_TIME_OF_DAY
• Provides a globally synchronized real time clock for tracing

• -multiplecounters appears in the name of the stub Makefile
• Often used with –papi=<dir> to measure hardware performance

counters and time
• papi_native_avail and papi_avail are two useful tools

Generate a PAPI profile

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

190

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64
/lib/Makefile.tau-multiplecounters-papi-mpi-pdt

% setenv TAU_OPTIONS „-optTauSelectFile=select.tau –optVerbose‟

% cat select.tau

BEGIN_INSTRUMENT_SECTION

loops routine=“#”

END_INSTRUMENT_SECTION

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv COUNTER1 GET_TIME_OF_DAY

% setenv COUNTER2 PAPI_FP_INS

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

Choose Options -> Show Derived Panel -> Arg 1 = PAPI_FP_INS,
Arg 2 = GET_TIME_OF_DAY, Operation = Divide -> Apply, choose.

-PROFILECALLPATH Option

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

191

• Generates profiles that show the calling order
(edges and nodes in callgraph)

– A=>B=>C shows the time spent in C when it was
called by B and B was called by A

– Control the depth of callpath using
TAU_CALLPATH_DEPTH environment variable

– -callpath in the name of the stub Makefile name
or setting TAU_CALLPATH= 1 at runtime
(TAU v2.18.1+)

-DEPTHLIMIT Option

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

192

• Allows users to enable instrumentation at runtime based on
the depth of a calling routine on a callstack
– Disables instrumentation in all routines a certain depth away

from the root in a callgraph
• TAU_DEPTH_LIMIT environment variable specifies depth

– % setenv TAU_DEPTH_LIMIT 1
– enables instrumentation in only “main”
– % setenv TAU_DEPTH_LIMIT 2
– enables instrumentation in main and routines that are directly

called by main

• Stub makefile has -depthlimit in its name:
– setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-

mpi-depthlimit-pdt

Generate a Callpath Profile

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

193

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64

/lib/Makefile.tau-callpath-mpi-pdt

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% setenv TAU_CALLPATH_DEPTH 100

NOTE: In TAU v2.18.1+ you may simply use:

% setenv TAU_CALLPATH 1

to generate the callpath profiles without any recompilation.

% qsub run.job

% paraprof -–pack app.ppk

Move the app.ppk file to your desktop.

% paraprof app.ppk

(Windows -> Thread -> Call Graph)

-TRACE Configuration Option

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

194

• Generates event-trace logs, rather than summary profiles
• Traces show when and where an event occurred in terms of location

and the process that executed it
• Traces from multiple processes are merged:

– % tau_treemerge.pl
• generates tau.trc and tau.edf as merged trace and event definition file

• TAU traces can be converted to Vampir’s OTF/VTF3, Jumpshot
SLOG2, Paraver trace formats:
– % tau2otf tau.trc tau.edf app.otf
– % tau2vtf tau.trc tau.edf app.vpt.gz
– % tau2slog2 tau.trc tau.edf -o app.slog2
– % tau_convert -paraver tau.trc tau.edf app.prv

• Stub Makefile has -trace in its name
– % setenv TAU_MAKEFILE <taudir>/<arch>/lib/Makefile.tau-icpc-mpi-

pdt-trace

Generate a Trace File

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

195

% setenv TAU_MAKEFILE /opt/tau-2.18/x86_64

/lib/Makefile.tau-mpi-pdt-trace

% set path=(/opt/tau-2.18/x86_64/bin $path)

% make F90=tau_f90.sh

(Or edit Makefile and change F90=tau_f90.sh)

% qsub run.job

% tau_treemerge.pl

(merges binary traces to create tau.trc and tau.edf files)

JUMPSHOT:

% tau2slog2 tau.trc tau.edf –o app.slog2

% jumpshot app.slog2

OR

VAMPIR:

% tau2otf tau.trc tau.edf app.otf –n 4 –z

(4 streams, compressed output trace)

% vampir app.otf

(or vng client with vngd server)

Instrumentation Specification

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

196

% tau_instrumentor

Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]

[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]

For selective instrumentation, use –f option

% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat

% cat selective.dat

Selective instrumentation: Specify an exclude/include list of routines/files.

BEGIN_EXCLUDE_LIST

void quicksort(int *, int, int)

void sort_5elements(int *)

void interchange(int *, int *)

END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

Main.cpp

Foo?.c

*.C

END_FILE_INCLUDE_LIST

Instruments routines in Main.cpp, Foo?.c and *.C files only

Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

Outer Loop Level Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

197

BEGIN_INSTRUMENT_SECTION

loops file="loop_test.cpp" routine="multiply"

it also understands # as the wildcard in routine name

and * and ? wildcards in file name.

You can also specify the full

name of the routine as is found in profile files.

#loops file="loop_test.cpp" routine="double multiply#"

END_INSTRUMENT_SECTION

% pprof

NODE 0;CONTEXT 0;THREAD 0:

%Time Exclusive Inclusive #Call #Subrs Inclusive Name

msec total msec usec/call

100.0 0.12 25,162 1 1 25162827 int main(int, char **)

100.0 0.175 25,162 1 4 25162707 double multiply()

90.5 22,778 22,778 1 0 22778959 Loop: double multiply()[

file = <loop_test.cpp> line,col = <23,3> to <30,3>]

9.3 2,345 2,345 1 0 2345823 Loop: double multiply()[

file = <loop_test.cpp> line,col = <38,3> to <46,7>]

0.1 33 33 1 0 33964 Loop: double

multiply()[file = <loop_test.cpp> line,col = <16,10> to <21,12>]

Support Acknowledgements
• Department of Energy (DOE)

– Office of Science
• MICS, Argonne National Lab

– ASC/NNSA
• University of Utah ASC/NNSA Level 1

• ASC/NNSA, Lawrence Livermore National Lab

• Department of Defense (DoD)

– HPC Modernization Office (HPCMO)

• NSF Software Development for Cyberinfrastructure (SDCI)

• Research Centre Juelich

• Los Alamos National Laboratory

• TU Dresden

• ParaTools, Inc.
Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

198

For more information

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

199

• TAU Website:
http://tau.uoregon.edu

– Software

– Release notes

– Documentation

VIRTUAL INSTITUTE – HIGH
PRODUCTIVITY SUPERCOMPUTING

Markus Geimer
Jülich Supercomputing Centre

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Virtual Institute – High Productivity Supercomputing

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

201

Goal: Improve the quality and accelerate the development process of
complex simulation codes running on highly-parallel computer
systems

• Funded by Helmholtz Association
of German Research Centres

• Activities
– Development and integration of HPC programming tools

• Correctness checking & performance analysis

– Training workshops
– Service

• Support email lists
• Application engagement

– Academic workshops

www.vi-hps.org

Partners

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

202

Forschungszentrum Jülich
– Jülich Supercomputing Centre

RWTH Aachen University
– Centre for Computing and Communication

Technical University of Dresden
– Centre for Information Services and HPC

University of Tennessee (Knoxville)
– Innovative Computing Laboratory

University of Stuttgart
– High Performance Computing Centre

Productivity tools

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

203

• Marmot
– Free MPI correctness checking tool

• PAPI
– Free library interfacing to hardware performance counters

• Scalasca
– Open-source toolset for analysing the performance behaviour of

parallel applications to automatically identify inefficiencies

• Vampir
– Commercial framework and graphical analysis tool to display and

analyse event traces

• VampirTrace
– Open-source tool generating event traces for analysis and visualization

by Vampir

• [Tuning Workshop Live-DVD contains latest tools releases]

Technologies and their integration

204

Optimization

Visual trace

analysis

Automatic

trace

analysis

Error

correction

Hardware

monitoring

Execution

SCALASCA

VAMPIR

PAPI

MARMOT

VI-HPS component technologies

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

205

• Key tool components also provided as open-source

– Program/library instrumentation

• OPARI, POMP

– Scalable I/O

• SIONlib

– Libraries & tools for handling (and converting) traces

• PEARL, EARL, EPILOG, OTF, Œ

– Analysis algebra & hierarchical/topological presentation

• CUBE

POINT/VI-HPS tool interoperability

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

206

• PerfSuite can generate reports in CUBE format

• TAU can use Scalasca & VampirTrace measurement libs and can
present reports in PerfSuite & CUBE formats

• TAU & Vampir use OPARI to instrument OpenMP sources, and
Scalasca can use TAU source instrumenter

• Scalasca & Vampir traces can be inter-converted

VI-HPS Training & Tuning Workshops

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

207

• Goals
– Give an overview of the programming tools suite
– Explain the functionality of individual tools
– Teach how to use the tools effectively
– Offer hands-on experience and expert assistance using tools
– Receive feedback from users to guide future development

• For best results, bring & analyse/tune your own code(s)!

• VI-HPS Tuning Workshop series
– Aachen (Mar'08), Dresden (Oct'08), Jülich (Feb'09), ...

• Joint POINT/VI-HPS Tutorial series
– Austin/SC (Nov'08), Baton Rouge/ICCS (May'09), ...

• Training with individual tools & platforms (e.g., BlueGene)

SCALABLE PERFORMANCE ANALYSIS
OF LARGE-SCALE PARALLEL
APPLICATIONS

Markus Geimer

Brian J. N. Wylie

Jülich Supercomputing Centre

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Performance analysis, tools & techniques

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

209

• Profile analysis
– Summary of aggregated metrics

• per function/call-path and/or per process/thread

– Most tools (can) generate and/or present such profiles
• but they do so in very different ways, often from event traces!

– e.g., mpiP, ompP, Tau, Scalasca, Sun Studio, Vampir, ...

• Time-line analysis
– Visual representation of the space/time sequence of events
– Requires an execution trace
– e.g., Vampir, Paraver, Sun Studio Performance Analyzer, ...

• Pattern analysis
– Search for characteristic event sequences in event traces
– Can be done manually, e.g., via visual time-line analysis
– Can be done automatically, e.g., KOJAK, Scalasca

Automatic trace analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

210

• Idea
– Automatic search for patterns of inefficient behaviour
– Classification of behaviour & quantification of significance

– Guaranteed to cover the entire event trace
– Quicker than manual/visual trace analysis
– Parallel replay analysis exploits memory & processors

to deliver scalability

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis

The Scalasca project

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

211

• Overview
– Helmholtz Initiative & Networking Fund project started in 2006
– Headed by Prof. Felix Wolf (RWTH Aachen University & FZJ)
– Follow-up to pioneering KOJAK project (started 1998)

• Automatic pattern-based trace analysis

• Objective
– Development of a scalable performance analysis toolset
– Specifically targeting large-scale parallel applications

• such as those running on BlueGene/P or Cray XT
with 10,000s to 100,000s of processes

– Latest release in November 2008: Scalasca v1.1
• Available on VI-HPS Tuning Workshop Live-DVD
• Scalasca 1.2β currently in testing

Scalasca features

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

212

• Open source, New BSD license
• Portable

– BG/P, BG/L, IBM SP & blade clusters, Cray XT, SGI Altix,
SiCortex, Solaris & Linux clusters, ...

• Supports parallel programming paradigms &
languages
– MPI, OpenMP & hybrid OpenMP/MPI
– Fortran, C, C++

• Integrated measurement & analysis toolset
– Runtime summarization (aka profiling)
– Automatic event trace analysis

Generic MPI application build & run

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

213

• Application code
compiled & linked into
executable using
MPICC/CXX/FC

• Launched with
MPIEXEC

• Application processes
interact via MPI library

program

sources

application+EPIKapplication+EPIKapplication+EPIKapplication + MPI library

compiler

executable

Application instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

214

• Automatic/manual
code instrumenter

• Program sources
processed to add
instrumentation and
measurement library into
application executable

• Exploits MPI standard
profiling interface (PMPI)
to acquire MPI events

program

sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

instrumentercompiler

instrumented executable

Measurement runtime summarization

215

• Measurement library
manages threads
& events produced
by instrumentation

• Measurements
summarized by
thread & call-path
during execution

• Analysis report unified
& collated at finalization

• Presentation of
summary analysis

program

sources

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

summary

analysis

analysis report examiner

instrumentercompiler

instrumented executable expt config

Measurement event tracing & analysis

216

• During measurement
time-stamped
events buffered
for each thread

• Flushed to files along
with unified definitions
& maps at finalization

• Follow-up analysis
replays events and
produces extended
analysis report

• Presentation of analysis
report

program

sources

unified

defs+maps
trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace

analysis

analysis report examiner

instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUTparallel trace analyzer

expt config

Generic parallel tools architecture

217

• Automatic/manual code
instrumenter

• Measurement library for
runtime summary &
event tracing

• Parallel (and/or serial)
event trace analysis
when desired

• Analysis report examiner
for interactive
exploration of measured
execution performance
properties

program

sources

unified

defs+maps
trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace

analysis

summary

analysis

analysis report examiner

instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUTparallel trace analyzer

expt config

Scalasca toolset components

218

• Scalasca instrumenter
= SKIN

• Scalasca measurement
collector & analyzer
= SCAN

• Scalasca analysis
report examiner
= SQUARE

program

sources

unified

defs+maps
trace Ntrace ..trace 2trace 1

application+EPIKapplication+EPIKapplication+EPIKapplication + measurement lib

trace

analysis

summary

analysis

analysis report examiner

instrumentercompiler

instrumented executable

SCOUTSCOUTSCOUTparallel trace analyzer

expt config

EPIK

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

219

• Measurement & analysis runtime system
– Manages runtime configuration and parallel execution
– Configuration specified via EPIK.CONF file or environment

• epik_conf reports current measurement configuration

– Creates experiment archive (directory): epik_<title>
– Optional runtime summarization report
– Optional event trace generation (for later analysis)
– Optional filtering of (compiler instrumentation) events
– Optional incorporation of HWC measurements with events

• via PAPI library, using PAPI preset or native counter names

• Experiment archive directory
– Contains (single) measurement & associated files (e.g., logs)
– Contains (subsequent) analysis reports

scalasca

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

220

• One command for everything
% scalasca
Scalasca 1.1
Toolset for scalable performance analysis of large-scale apps
usage: scalasca [-v][-n] {action}
1. prepare application objects and executable for measurement:

scalasca -instrument <compile-or-link-command> # skin
2. run application under control of measurement system:

scalasca -analyze <application-launch-command> # scan
3. interactively explore measurement analysis report:

scalasca -examine <experiment-archive|report> # square

[-h] show quick reference guide (only)

scalasca actions

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

221

• One command for everything
% scalasca -usage
% scalasca -instrument [options] <compile-or-link-command>
% scalasca -analyze [options] <application-launch-command>
% scalasca -examine [options] <experiment-archive|report>

... that does nothing!
– simply a shell script wrapper for action commands:
% skin [options] <compile-or-link-command>

• prepare application objects and executable for measurement

% scan [options] <application-launch-command>
• run application under control of measurement system

% square [options] <experiment-archive|report>
• interactively explore measurement analysis report

OPARI

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

222

• Automatic instrumentation of OpenMP & POMP
directives via source pre-processor
– Parallel regions, worksharing, synchronization
– Currently limited to OpenMP 2.5

• No special handling of guards, dynamic or nested thread
teams

– Configurable to disable instrumentation of locks, etc.
– Typically invoked internally by instrumentation tools

• Used by Scalasca/Kojak, ompP, TAU, VampirTrace,
etc.
– Provided with Scalasca, but also available separately

CUBE3

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

223

• Parallel program analysis report exploration tools

– Libraries for XML report reading & writing

– Algebra utilities for report processing

– GUI for interactive analysis exploration

• requires Qt4 or wxGTK widgets library

• can be installed independently of Scalasca instrumenter and
measurement collector/analyzer, e.g., on laptop or desktop

• Used by Scalasca/Kojak, Marmot, ompP, PerfSuite,
etc.

– Provided with Scalasca, but also available separately

Analysis presentation and exploration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

224

• Representation of values (severity matrix)
on three hierarchical axes
– Performance property (metric)
– Call-tree path (program location)
– System location (process/thread)

• Three coupled tree browsers

• CUBE3 displays severities
– As value: for precise comparison
– As colour: for easy identification of hotspots
– Inclusive value when closed & exclusive value when expanded
– Customizable via display mode

Call

path

P
ro

p
e
rt

y

Location

Scalasca analysis report explorer (summary)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

225

How is it

distributed across

the processes?

What kind of

performance

problem? Where is it in the

source code?

In what context?

Scalasca analysis report explorer (trace)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

226

Additional

metrics

determined

from trace

Scalasca summary analysis: zeusmp2 on jump

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

227

• 12.8% of time spent
in MPI point-to-point
communication

• 45.0% of which is on
program callpath
transprt/ct/hsmoc

• With 23.2% std dev
over 512 processes

• Lowest values in 3rd

and 4th planes of the
Cartesian grid

Scalasca trace analysis: zeusmp2 on jump

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

228

• MPI point-to-point
communication time
separated into
transport and Late
Sender fractions

• Late Sender
situations dominate
(57%)

• Distribution of
transport time (43%)
indicates congestion
in interior of grid

Scalasca 1.1 functionality

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

229

• MPI measurement & analyses
– scalable runtime summarization & event tracing
– only requires application executable re-linking
– limited analyses of non-blocking point-to-point, RMA, ...

• OpenMP measurement & analysis
– serial event trace analysis (of merged traces)

• runtime summarization limited to master thread only

– requires (automatic) application source instrumentation
– restricted to fixed OpenMP thread teams

• Hybrid OpenMP/MPI measurement & analysis
– combined requirements/capabilities
– automatic trace analysis is scalable but incomplete

• can repeat analysis with serial analyzer when desired

Scalasca 1.2β additional functionality

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

230

• OpenMP measurement & analysis
– run-time summaries include OpenMP metrics (for all

threads)
• not all threads need to participate in parallel regions

– trace collection & analysis unchanged

• Hybrid OpenMP/MPI measurement & analysis
– OpenMP metrics (for all threads) included in run-time

summaries and trace analysis

• MPI File I/O analysis
– collective read/write time
– file operations (reads/writes)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

231

Tutorial Exercise
NPB-MPI BT

Performance analysis steps

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

232

1. Reference preparation for validation

2. Program instrumentation: skin

3. Summary measurement collection & analysis: scan [-s]

4. Summary analysis report examination: square

5. Summary experiment scoring: square -s

6. Event trace collection & analysis: scan -t

7. Event trace analysis report examination: square

• Configuration & customization
– Instrumentation, Measurement, Analysis, Presentation

Live-DVD tutorial sources

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

233

• Tutorial example sources provided for several programs
(implemented in various languages & parallelizations)
– Scalasca

• jacobi # MPI/OpenMP/hybrid x C/C++/Fortran

• sweep3d # MPI/Fortran

• smg2000 # MPI/C

• NPB3.3-MPI # MPI/Fortran & C

• NPB3.3-OMP # OpenMP/Fortran & C

• NPB3.3-MZ-MPI # hybrid OpenMP+MPI/Fortran

• This tutorial concentrates on NPB3.3-MPI-BT
– but can be repeated substituting other examples as desired

NPB-BT

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

234

• Intermediate-level tutorial example
• Available in MPI, OpenMP, hybrid OpenMP/MPI variants

– also MPI File I/O variants (collective & individual)

• Summary measurement collection & analysis
– Automatic instrumentation

• OpenMP, MPI & application functions

– Summary analysis report examination

• Trace measurement collection & analysis
– Filter determination, specification & configuration
– Automatic trace analysis report patterns

• (Analysis report algebra)

NPB-MPI suite

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

235

• The NAS Parallel Benchmark suite (sample MPI version)
– Available from http://www.nas.nasa.gov/Software/NPB
– 9 benchmarks (7 in Fortran77, 2 in C)
– Configurable for various sizes & classes

• Move into the NPB3.3-MPI root directory

• Subdirectories contain source code for each benchmark
– plus additional configuration and common code

• The provided distribution has already been configured for
the tutorial, such that it's ready to “make” one or more of
the benchmarks and install them into the “bin” subdirectory

% cd NPB3.3-MPI; ls

BT/ CG/ DT/ EP/ FT/ IS/ LU/ MG/ SP/

bin/ common/ config/ Makefile README README.install sys/

Building an NPB benchmark

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

236

• Specify the benchmark configuration
– benchmark name: bt, cg, dt, ep, ft, is, lu, mg, sp
– the number of MPI processes: NPROC=16
– the benchmark class (S, W, A, B, C, D, E, F): CLASS=W

% make bt NPROCS=16 CLASS=W

cd BT; make NPROCS=16 CLASS=W SUBTYPE= VERSION=

gmake: Entering directory 'BT'

cd ../sys; cc -o setparams setparams.c

../sys/setparams bt 16 W

mpif77 -c -O bt.f

...

cd ../common; mpif77 -c -O timers.f

mpif77 -c -O btio.f

mpif77 -O -o ../bin/bt.W.16 \

bt.o make_set.o initialize.o exact_solution.o exact_rhs.o \

set_constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o \

x_solve.o y_solve.o z_solve.o add.o error.o verify.o setup_mpi.o \

../common/print_results.o ../common/timers.o btio.o

gmake: Leaving directory 'BT'

NPB-MPI BT (Block Tridiagonal solver)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

237

• What does it do?
– Solves a discretized version of unsteady, compressible Navier-

Stokes equations in three spatial dimensions
– Performs 200 time-steps on a regular 3-dimensional grid

• Can be configured to include various forms of parallel I/O
– e.g., MPI collective file I/O: SUBTYPE=full

• Implemented in 20 or so Fortran77 source modules

• Needs a square number of processes
– bt.W.4 should run in around 5 seconds with 4 processes
– bt.A.4 should take around 16-20x longer (90 seconds)
– bt.W.16 may also run in around 5 seconds with 16 processes

BT-MPI reference execution

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

238

• Launch as an MPI application
% mpiexec -np 16 bin/bt.W.16

NAS Parallel Benchmarks 3.3 -- BT Benchmark

Size: 24x 24x 24

Iterations: 200 dt: 0.0008000

Number of active processes: 16

Time step 1

Time step 20

Time step 40

Time step 60

...

Time step 160

Time step 180

Time step 200

Verification Successful

BT Benchmark Completed.

Time in seconds = 4.70

Load the Scalasca module

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

239

• Load the module

• ... and run scalasca for brief usage information

% module load UNITE

UNITE loaded

% module load scalasca

scalasca/1.1 loaded

% scalasca

Scalasca 1.1

Toolset for scalable performance analysis of large-scale applications

usage: scalasca [-v][-n] {action}

1. prepare application objects and executable for measurement:

scalasca -instrument <compile-or-link-command> # skin

2. run application under control of measurement system:

scalasca -analyze <application-launch-command> # scan

3. interactively explore measurement analysis report:

scalasca -examine <experiment-archive|report> # square

-v: enable verbose commentary

-n: show actions without taking them

-h: show quick reference guide (only)

NPB-MPI-BT instrumented build

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

240

• Return to root directory and clean-up

• Re-build specifying Scalasca instrumenter as PREP

% make clean

% make bt NPROCS=16 CLASS=W PREP=”scalasca -instrument”

cd BT; make NPROCS=16 CLASS=W SUBTYPE= VERSION=

gmake: Entering directory 'BT'

cd ../sys; cc -o setparams setparams.c

../sys/setparams bt 16 W

scalasca -instrument mpif77 -c -O bt.f

...

cd ../common; scalasca -instrument mpif77 -c -O timers.f

scalasca -instrument mpif77 -c -O btio.f

scalasca -instrument mpif77 -O -o ../bin/bt.W.16 \

bt.o make_set.o initialize.o exact_solution.o exact_rhs.o \

set_constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o \

x_solve.o y_solve.o z_solve.o add.o error.o verify.o setup_mpi.o \

../common/print_results.o ../common/timers.o btio.o

gmake: Leaving directory 'BT'

NPB instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

241

• PREP macro in Makefile definitions (config/make.def)
used as a preparator prefix for compile/link commands

• By default, PREP macro is not set and no instrumentation is
performed for a regular “production” build

• Specifying a PREP value in the Makefile or on the make command line
uses it as a prefix, e.g., for instrumentation
– make PREP=”scalasca -instrument”

MPIF77 = $(PREP) mpif77

FLINK = $(MPIF77)

FFLAGS = -O

mpi-bt: $(OBJECTS)

$(FLINK) $(FFLAGS) -o mpi-bt $(OBJECTS)

.f.o:

$(MPIF77) $(FFLAGS) -c $<

BT-MPI summary measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

242

• Run the application using the Scalasca measurement
collection & analysis nexus prefixed to launch command

• Produces experiment directory ./epik_bt_16_sum

% scalasca -analyze mpiexec -np 16 ./bt.W.mpi

S=C=A=N: Scalasca 1.1 runtime summarization

S=C=A=N: ./epik_bt_16_sum experiment archive

S=C=A=N: Sun Mar 29 16:36:31 2009: Collect start

mpiexec -np 16 ./bt.A.mpi

[00000]EPIK: Created new measurement archive ./epik_bt_16_sum

[00000]EPIK: Activated ./epik_bt_16_sum [NO TRACE] (0.006s)

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_bt_16_sum

[00000]EPIK: 102 unique paths (102 max paths, 4 max frames, 0 unknown)

[00000]EPIK: Unifying... done (0.023s)

[00000]EPIK: Collating... done (0.049s)

[00000]EPIK: Closed experiment ./epik_bt_16_sum (0.073s)

S=C=A=N: Sun Mar 29 16:36:45 2009: Collect done (status=0) 14s

S=C=A=N: ./epik_bt_16_sum complete.

BT-MPI summary analysis report examination

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

243

• Interactive exploration with Scalasca GUI

• Report scoring as textual output

% scalasca -examine epik_bt_16_sum

INFO: Post-processing runtime summarization result...

INFO: Displaying ./epik_bt_16_sum/summary.cube...

[GUI showing summary analysis report]

% scalasca -examine -s epik_bt_16_sum

cube3_score ./epik_bt_16_sum/summary.cube

Reading ./epik_bt_16_sum/summary.cube... done.

Estimated aggregate size of event trace (total_tbc): 513,823,960 bytes

Estimated size of largest process trace (max_tbc): 32,528,680 bytes

(When tracing set ELG_BUFFER_SIZE to avoid intermediate flushes or

reduce requirements using filter file listing names of USR regions.)

flt type max_tbc time % region

ANY 32528680 220.22 100.00 (summary) ALL

MPI 642712 194.57 88.35 (summary) MPI

USR 31688040 24.62 11.18 (summary) USR

COM 197928 1.03 0.47 (summary) COM

Analysis report exploration (opening view)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

244

Analysis report exploration (system tree)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

245

Distribution of

selected metric

for call path by

process/thread

Analysis report exploration (call tree)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

246

Distribution of

selected metric

across the call tree

Selection updates

metrics shown in

columns to right

Analysis report exploration (metric tree)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

247

Split base metrics into

more specific metrics

Analysis report exploration (source browser)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

248

BT-MPI summary analysis score

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

249

• Summary measurement analysis score reveals
– Total size of event trace would be over 500MB
– Maximum trace buffer size would be over 30MB per process

• smaller buffer would require flushes to disk during measurement
resulting in substantial perturbation

– 97% of the trace requirements are for USR regions
• purely computational routines never found on COM call-paths common

to communication routines

– These USR regions contribute around 10% of total time
• however, much of that is very likely to be measurement overhead for

frequently-executed small routines

• Advisable to tune measurement configuration
– Specify an adequate trace buffer size
– Specify a filter file listing (USR) regions not to be measured

BT-MPI summary analysis report breakdown

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

250

• Report scoring with region breakdown
% cube3_score -r ./epik_bt_16_sum/summary.cube

flt type max_tbc time % region

ANY 32528680 220.22 100.00 (summary) ALL

MPI 642712 194.57 88.35 (summary) MPI

USR 31688040 24.62 11.18 (summary) USR

COM 197928 1.03 0.47 (summary) COM

USR 10231704 4.44 2.02 binvcrhs_

USR 10231704 3.06 1.39 matvec_sub_

USR 10231704 3.53 1.60 matmul_sub_

USR 492048 0.16 0.07 binvrhs_

USR 360576 0.12 0.05 exact_solution_

MPI 241500 0.27 0.12 MPI_Isend

MPI 222180 0.12 0.06 MPI_Irecv

MPI 173664 173.02 78.57 MPI_Wait

USR 57888 0.06 0.03 lhsabinit_

USR 19296 3.53 1.60 y_solve_cell_

...

USR

USR

COM

COM USR

USR MPI

BT-MPI summary analysis report filtering

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

251

• Report scoring with filter listing 6 USR regions
% cube3_score -r -f npb.filt ./epik_bt_16_sum/summary.cube

Applying filter "./npb.filt":

Estimated aggregate size of event trace (total_tbc): 16,852,888 bytes

Estimated size of largest process trace (max_tbc): 1,053,304 bytes

flt type max_tbc time % region

+ FLT 31475376 11.37 5.16 (summary) FLT

* ANY 1053328 208.85 94.84 (summary) ALL-FLT

- MPI 642712 194.57 88.35 (summary) MPI-FLT

* USR 212688 13.25 6.02 (summary) USR-FLT

* COM 197928 1.03 0.47 (summary) COM-FLT

+ USR 10231704 4.44 2.02 binvcrhs_

+ USR 10231704 3.06 1.39 matvec_sub_

+ USR 10231704 3.53 1.60 matmul_sub_

+ USR 492048 0.16 0.07 binvrhs_

+ USR 360576 0.12 0.05 exact_solution_

- MPI 241500 0.27 0.12 MPI_Isend

- MPI 222180 0.12 0.06 MPI_Irecv

- MPI 173664 173.02 78.57 MPI_Wait

+ USR 57888 0.06 0.03 lhsabinit_

...

% cat npb.filt
filter for bt
binvcrhs_
matvec_sub_
matmul_sub_
binvrhs_
exact_solution_
lhsabinit_

BT-MPI filtered summary measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

252

• Rename former measurement archive directory,
set new filter configuration and re-run the measurement
% mv epik_bt_16_sum epik_bt_16_sum.nofilt

% export EPK_FILTER=npb.filt

% scalasca -analyze mpiexec -np 16 ./bt.W.16

S=C=A=N: Scalasca 1.1 runtime summarization

S=C=A=N: ./epik_bt_16_sum experiment archive

S=C=A=N: Sun Mar 29 16:58:34 2009: Collect start

mpiexec -np 16 ./bt.W.16

[00000]EPIK: Created new measurement archive ./epik_bt_16_sum

[00000]EPIK: EPK_FILTER “npb.filt” filtered 6 of 96 functions

[00000]EPIK: Activated ./epik_bt_16_sum [NO TRACE] (0.071s)

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_bt_16_sum

[00000]EPIK: 84 unique paths (84 max paths, 4 max frames, 0 unknowns)

[00000]EPIK: Unifying... done (0.014s)

[00000]EPIK: Collating... done (0.059s)

[00000]EPIK: Closed experiment ./epik_bt_16_sum (0.075s)

S=C=A=N: Sun Mar 29 16:58:41 2009: Collect done (status=0) 7s

S=C=A=N: ./epik_bt_16_sum complete.

BT-MPI tuned summary analysis report score

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

253

• Scoring of new analysis report as textual output

• Significant reduction in runtime (measurement overhead)
– Not only reduced time for USR regions, but MPI reduced too!

• Further measurement tuning (filtering) may be appropriate
– e.g., use “timer_*” to filter timer_start_, timer_read_, etc.

% scalasca -examine -s epik_bt_16_sum

INFO: Post-processing runtime summarization result...

cube3_score ./epik_bt_16_sum/summary.cube

Estimated aggregate size of event trace (total_tbc): 16,852,888 bytes

Estimated size of largest process trace (max_tbc): 1,053,328 bytes

(When tracing set ELG_BUFFER_SIZE to avoid intermediate flushes or

reduce requirements using filter file listing names of USR regions.)

flt type max_tbc time % region

ANY 1053328 98.39 100.00 (summary) ALL

MPI 642712 86.83 88.25 (summary) MPI

USR 212688 9.88 10.04 (summary) USR

COM 197928 1.68 1.71 (summary) COM

Summary analysis report exploration (filtered)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

254

Same message statistics,

but times greatly reduced

BT-MPI trace measurement collection...

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

255

• Re-run the application using Scalasca nexus with “-t” flag

• Separate trace file per MPI rank written straight into new experiment
directory ./epik_bt_16_trace

% scalasca -analyze -t mpiexec -np 16 ./bt.W.16

S=C=A=N: Scalasca trace collection and analysis

S=C=A=N: ./epik_bt_16_trace experiment archive

S=C=A=N: Sun Apr 5 18:50:57 2009: Collect start

mpiexec -np 16 ./bt.W.16

[00000]EPIK: Created new measurement archive ./epik_bt_16_trace

[00000]EPIK: EPK_FILTER "npb.filt" filtered 6 of 96 functions

[00000]EPIK: Activated ./epik_bt_16_trace [10000000 bytes] (0.051s)

[... Application output ...]

[00000]EPIK: Closing experiment ./epik_bt_16_trace [0.016GB] (max 1053310)

[00000]EPIK: Flushed 1053330 bytes to file ./epik_bt_16_trace/ELG/00000

[00000]EPIK: 84 unique paths (84 max paths, 4 max frames, 0 unknowns)

[00000]EPIK: Unifying... done (0.021s)

[00013]EPIK: Flushed 1053306 bytes to file ./epik_bt_16_trace/ELG/00013

...

[00001]EPIK: Flushed 1053306 bytes to file ./epik_bt_16_trace/ELG/00001

[00000]EPIK: 1flush=0.001GB@2.582MB/s, Pflush=0.015GB@35.458MB/s

[00000]EPIK: Closed experiment ./epik_bt_16_trace (0.178s)

S=C=A=N: Sun Apr 5 18:51:05 2009: Collect done (status=0) 8s

[.. continued ...]

BT-MPI trace measurement ... analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

256

• Continues with automatic (parallel) analysis of trace files

• Produces trace analysis report in experiment directory

S=C=A=N: Sun Apr 5 18:51:05 2009: Analyze start

mpiexec -np 16 scout ./epik_bt_16_trace

SCOUT Copyright (c) 1998-2009 Forschungszentrum Juelich GmbH

Analyzing experiment archive ./epik_bt_16_trace

Reading definitions file ... done (0.563s).

Reading event trace files ... done (0.495s).

Preprocessing ... done (0.134s).

Analyzing event traces ... done (2.186s).

Writing CUBE report ... done (0.160s).

Total processing time : 3.737s

Max. memory usage : 7.000MB

S=C=A=N: Sun Apr 5 18:51:09 2009: Analyze done (status=0) 4s

S=C=A=N: ./epik_bt_16_trace complete.

% scalasca -examine epik_bt_16_trace

INFO: Post-processing runtime summarization result...

INFO: Post-processing trace analysis report ...

INFO: Displaying ./epik_bt_16_sum/trace.cube...

Trace analysis report exploration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

257

Additional trace-based

metrics in metric hierarchy

Further information

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

258

• Consult quick reference guide for further information

• CUBE GUI provides context sensitive help and on-line
metric descriptions

• EPIK archive directories contain analysis report(s),
measurement collection & analysis logs, etc.

• Instrumentation, measurement, analysis & presentation
can all be extensively customized

• Visit www.scalasca.org or mail scalasca@fz-juelich.de

% scalasca -h

Scalasca 1.1 – quick reference guide

pdfview /UNITE/packages/scalasca/1.1/doc/manuals/quickref.pdf

[PDF viewer showing quick reference guide]

http://www.scalasca.org/
mailto:scalasca@fz-juelich.de
mailto:scalasca@fz-juelich.de
mailto:scalasca@fz-juelich.de

EPIK user instrumentation API

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

259

• EPIK user instrumentation API
– #include “epik_user.h”
– EPIK_USER_REG(epik_solve, “<<Solve>>”)
– EPIK_USER_START(epik_solve)
– EPIK_USER_END(epik_solve)

• Can be used to mark initialization, solver & other phases
– Annotation macros ignored by default
– Instrumentation enabled with “-user” flag
– Also available for Fortran

• #include “epik_user.inc” and use C preprocessor

• Appear as additional regions in analyses
– Distinguishes performance of important phase from rest

EPIK measurement configuration

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

260

• Via ./EPIK.CONF file

• Via environment variables

• Via command-line flags (partially)

• To show current/default configuration

• Actual Scalasca measurement configuration saved in experiment
archive as epik.conf

EPK_FILTER=smg2000.filt

ELG_BUFFER_SIZE=40000000

% export EPK_FILTER=smg2000.filt

% export ELG_BUFFER_SIZE=40000000

% scalasca -analyze -f smg2000.filt ...

% epik_conf

CUBE algebra utilities

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

261

• Extracting solver sub-tree from analysis report

• Calculating difference of two reports

• Additional utilities for merging, calculating mean, etc.
– Default output of cube3_utility is a new report utility.cube

• Further utilities for report scoring & statistics
• Run utility with “-h” (or no arguments) for brief usage

info

% cube3_cut -r '<<SMG.Solve>>' epik_smg2000_12_trace/trace.cube

Writing cut.cube... done.

% cube3_diff epik_smg2000_12_trace/trace.cube cut.cube

Writing diff.cube... done.

Scalasca usage recap

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

262

1. Reference preparation for validation
2. Program instrumentation: skin

3. Summary measurement collection & analysis: scan [-s]

4. Summary analysis report examination: square

5. Summary experiment scoring: square -s

6. Event trace collection & analysis: scan -t

7. Event trace analysis report examination: square

• General usage/help: scalasca [-h]

• Instrumentation, measurement, analysis & presentation
can all be extensively customized

• Visit www.scalasca.org or mail scalasca@fz-juelich.de

skin – Scalasca application instrumenter

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

263

• Prepares application objects & executables for measurement
– skin = scalasca -instrument
– skin [options] <compile-or-link-command>

• defaults to automatic function instrumentation by compiler
– available for most compilers, but not all

• for OpenMP, includes source-level pre-processing of directives to insert
POMP instrumentation

– [-pomp]
• source-level pre-processing of OpenMP & POMP directives

instead of automatic compiler instrumentation

– [-user]
• additionally enable EPIK user instrumentation API
• offers complementary program structure information for analyses via

user-provided annotations (e.g., phases, loops, ...)

scan – Scalasca measurement collection/analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

264

• Runs application under control of measurement system to
collect and analyze an execution experiment
– scan = scalasca -analyze
– scan [options] <application-launch-command>

• e.g., scan [options] [$MPIEXEC [mpiexec-options]] [target [args]]

– [-s] collect summarization experiment [default]
– [-t] collect event traces and then analyze them automatically
– Additional options

• [-e] experiment archive (directory) name
• [-f filter] specify file listing routines to ignore during measurement
• [-m metric1:metric2:...] include hardware counter metrics
• [-n] preview scan and perform checks but don't execute
• [-q] quiesce (disable most) measurement collection
• [-a] (re-)analyze a previously collected experiment

square – Scalasca analysis report examiner

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

265

• Prepares and presents measurement analysis report(s)
for interactive exploration
– square = scalasca -examine
– square [options] <experiment-archive|report>

• e.g., square epik_title

– Post-processes intermediate measurement analysis reports
– Launches GUI and presents default analysis report

(if multiple reports available)
• trace analysis given precedence over summary analysis
• select other reports via File/Open menu

– [-s] skip display and output textual score report
• estimate total trace size and maximum rank trace size
• breakdown of USR vs. MPI/OMP vs. COM region requirements

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

266

Performance analysis & tuning
case studies

Additional Live-DVD example experiments

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

267

• Example experiment archives provided for examination:
– jugene_sweep3d

• 65,536 MPI processes on BG/P (trace)

– jump_zeusmp2
• 512 MPI processes on p690 cluster (summary & trace)

– marenostrum_wrf-nmm
• 1600 MPI processes on JS21 blade cluster, solver extract
• summary analysis with 8 PowerPC hardware counters
• trace analysis showing NxN completion problem on some blades

– neptun_jacobi
• 12 MPI processes, or 12 OpenMP threads, or 4x3 hybrid parallelizations

implemented in C, C++ & Fortran on SGI Altix

– ranger_smg2000
• 12,288 MPI processes on Sun Constellation cluster, solve extract

Scalasca NPB-BT experiments

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

268

• Comparison of NPB-BT class A in various configurations
run on a single dedicated 16-core cluster compute node
– 16 MPI processes

• optionally built using MPI File I/O (e.g., SUBTYPE=full)

• optionally including PAPI counter metrics in measurement
(e.g., EPK_METRICS=PAPI_FP_OPS:DISPATCH_STALLS)

– 16 OpenMP threads

– 4 MPI processes each with 4 OpenMP threads (MZ-MPI)

• NPB-BT-MZ class B on Cray XT5 (8-core compute nodes)
– 32 MPI processes with OMP_NUM_THREADS=8

• More threads created on some processes (and fewer on others) as
application attempts to balance work distribution

16-process trace analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

269

16-process summary analysis with HWC metrics

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

270

EPK_METRICS = PAPI_TOT_CYC:PAPI_TOT_INS:PAPI_FP_OPS:DISPATCH_STALLS

16-process summary analysis: MPI File I/O time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

271

BT-MPI SUBTYPE=full

using collective MPI file I/O

has imbalance during read

MPI file statistics

16-process summary analysis: MPI File I/O time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

272

BT-MPI SUBTYPE=simple

using individual MPI file I/O

is balanced but much slower

MPI file statistics

16-thread summary analysis: Execution time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

273

Thread 15 finishes

its work fastest ...

16-thread summary analysis: Implicit barrier time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

274

... but must then wait

longest at end of loop

16-thread summary analysis: Thread fork time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

275

Less than 1% overhead

for thread management

16-thread summary analysis: Idle threads time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

276

99.74% of execution time

found in parallel regions

4x4 summary analysis: Execution time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

277

Fourth thread in team

generally has lighter load

4x4 summary analysis: OpenMP time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

278

9% OpenMP time mostly

found at implicit barriers

4x4 summary analysis: Idle threads time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

279

9% of total time wasted

with idle/unused threads

4x4 summary analysis: MPI time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

280

2.75% MPI time only

found on master threads

4x4 combined summary & trace analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

281

32x8 summary analysis: Excl. execution time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

282

Generally good process

and thread load balance

32x8 summary analysis: Limited parallelism

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

283

Even through a number

of threads are never used

32x8 summary analysis: Idle threads time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

284

However, serial execution

sections are prevalent ...

32x8 summary analysis: MPI communication time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

285

... typically while master

thread communicating

32x8 summary analysis: Implicit barrier time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

286

Thread imbalance also

results in substantial loss

32x8 summary analysis: Thread management

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

287

Thread management cost

high with over-subscription

32x8 summary analysis: Critical section time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

288

Atomic statements during

verification are efficient

AMMP on Altix case study

• Molecular mechanics simulation
– original version developed by Robert W. Harrison

• SPEC OMP benchmark parallel version
– ~14,000 lines (in 28 source modules): 100% C

• Run with 32 threads on SGI Altix 4700 at TUD-ZIH
– Built with Intel compilers
– 333 simulation timesteps for 9582 atoms

• Scalasca summary measurement
– Minimal measurement dilation
– 60% of total time lost in synchronization with lock API
– 12% thread management overhead

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

289

ammp on jupiter@32 OpenMP lock analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

290

OpenMP

metrics

reworked

with v1.2β

Lots of explicit lock

synchronization is a

scalability inhibitor

ammp on jupiter@32 OpenMP fork analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

291

OpenMP

metrics

reworked

with v1.2β

Thread management

costs vary by parallel

region & num_threads

WRF/MareNostrum case study

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

292

• Numerical weather prediction
– public domain code developed by US NOAA
– flexible, state-of-the-art atmospheric simulation
– Non-hydrostatic Mesoscale Model (NMM)

• MPI parallel version 2.1.2 (Jan-2006)
– >315,000 lines (in 480 source modules): 75% Fortran, 25% C

• Eur-12km dataset configuration
– 3-hour forecast (360 timesteps) with checkpointing disabled

• Run with 1600 processes on MareNostrum
– IBM BladeCenter cluster at BSC

• Scalasca summary and trace measurements
– 15% measurement dilation with 8 hardware counters
– 23GB trace analysis in 5 mins

WRF on MareNostrum@1600 with HWC metrics

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

293

Distribution of

data load hits in

level 2 cache on

application MPI

2D grid topology

WRF on MareNostrum@1600 trace analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

294

Imbalance

at exit from

Allreduce

MareNostrum

JS21 topology

shows blades

WRF on MareNostrum@1600 time-line extract

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

295

Some ranks require extra 1.75s

to complete 51st MPI_Allreduce

WRF/MareNostrum experience

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

296

• Limited system I/O requires careful management
– Selective instrumentation and measurement filtering

• PowerPC hardware counter metrics included in summary
• Automated trace analysis quantified impact of imbalanced

exit from MPI_Allreduce in “NxN completion time” metric
– Intermittent but serious MPI library/system problem,

that restricts application scalability
– Only a few processes directly impacted, however, communication

partners also quickly blocked

• Presentation using logical and physical topologies
– MPI Cartesian topology provides application insight
– Hardware topology helps localize system problems

XNS on BlueGene/L case study

• CFD simulation of unsteady flows
– developed by RWTH CATS group of Marek Behr
– exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies

• MPI parallel version (Dec-2006)
– >40,000 lines of Fortran & C
– DeBakey blood-pump dataset (3,714,611 elements)

Partitioned finite-element mesh

XNS-DeBakey on jubl@4096 summary analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

298

Masses of

P2P synch

operations

Processes

all equally

responsible

Point-to-

point msgs

w/o data

Primarily

in scatter

& gather

XNS-DeBakey scalability on BG/L

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

299

Original

performance

peaked at

132 ts/hr

3.5x overall

improvement

to 461 ts/hr

XNS on BlueGene/L experience

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

300

• Globally synchronized high-resolution clock facilitates
efficient measurement & analysis

• Restricted compute node memory limits trace buffer size and
analyzable trace size

• Summarization identified bottleneck due to unintended P2P
synchronizations (messages with zero-sized payload)

• 4x solver speedup after replacing MPI_Sendrecv operations
with size-dependant separate MPI_Send and MPI_Recv

• Significant communication imbalance remains due to mesh
partitioning and mapping onto processors

• MPI_Scan implementation found to contain implicit barrier
– responsible for 6% of total time with 4096 processes
– decimated when substituted with simultaneous binomial tree

PEPC-B on BG/P & Cray XT case study

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

301

• Coulomb solver used for laser-plasma simulations
– Developed by Paul Gibbon (JSC)

– Tree-based particle storage with dynamic load-balancing

• MPI version
– PRACE benchmark configuration, including file I/O

• Run on BlueGene/P in dual mode with 1024 processes
– 2 processes per quad-core PowerPC node, 1100 seconds

• Run on Cray XT in VN (4p) mode with 1024 processes
– 4 processes per quad-core Opteron node, 360 seconds

PEPC@1024 on BlueGene/P: Wait at NxN time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

302

Time waiting for last rank

to enter MPI_Allgather

PEPC@1024 on Cray XT4: Wait at NxN time

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

303

Time waiting for last rank

to enter MPI_Allgather

PEPC-B on BG/P & Cray XT experience

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

304

• Despite very different processor and network performance,
measurements and analyses can be easily compared
– different compilers affect function naming & in-lining

• Both spend roughly two-thirds of time in computation
– tree_walk has expensive computation & communication

• Both waste 30% of time waiting to enter MPI_Barrier
– not localized to particular processes, since particles are regularly

redistributed

• Most of collective communication time is also time waiting
for last ranks to enter MPI_Allgather & MPI_Alltoall
– imbalance for MPI_Allgather twice as severe on BlueGene/P,

however, almost 50x less for MPI_Alltoall
– collective completion times also notably longer on Cray XT

Sweep3d on BlueGene/P case study

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

305

• 3D neutron transport simulation
– ASC benchmark
– direct order solve uses diagonal sweeps through grid cells

• MPI parallel version 2.2b using 2D domain
decomposition
– ~2,000 lines (12 source modules), mostly Fortran77

• Run on IBM BlueGene/P in VN mode with 64k processes
– 175GB trace written in 17 minutes, analyzed in 160 seconds

• 16 minutes just to create 64k files (one per MPI rank)
• SIONlib reduces this to a couple of seconds

– Mapping of 256x256 grid of processes onto 3D physical
torus results in regular performance artifacts

sweep3d on jugene@64k trace analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

306

Computation time

distribution likely due

to mapping onto torus

sweep3d on jugene@64k trace (wait) analysis

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

307

Late Receiver time

distribution likely due

to mapping onto torus

Acknowledgements

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

308

• The application and benchmark developers
who provided their codes and/or measurement
archives

• The facilities who made their HPC resources
available

– BSC, CSC, CSCS, EPCC, JSC, HLRS, LRZ, NCCS/ORNL,
RWTH, RZG, TeraGrid/TACC, TUD/ZIH, ALCF, UTK/ICL

Further information

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

309

Scalable performance analysis
of large-scale parallel applications
– toolset for scalable performance measurement &

analysis of MPI, OpenMP & hybrid parallel
applications

– supporting most popular HPC computer systems

– available under New BSD open-source license

– sources, documentation & publications:
• http://www.scalasca.org

• mailto: scalasca@fz-juelich.de

http://www.scalasca.org/
http://www.scalasca.org/
mailto:scalasca@fz-juelich.de
mailto:scalasca@fz-juelich.de
mailto:scalasca@fz-juelich.de
mailto:scalasca@fz-juelich.de

VAMPIRTRACE & VAMPIR
INTRODUCTION AND OVERVIEW

Andreas Knüpfer

Technical University Dresden

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Overview

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

311

• Introduction
• Event Trace Visualization
• Vampir & VampirServer
• The Vampir Displays

– Timeline
– Process Timeline with Performance Counters
– Summary Display
– Message Statistics

• VampirTrace
– Instrumentation & Run-Time Measurement

• Conclusions

Introduction

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

312

Why bother with performance analysis?
• well, why are you here after all?
• efficient usage of expensive and limited resources
• scalability to achieve next bigger simulation

Profiling and Tracing
• have an optimization phase

– just like testing and debugging phase

• use tools!
• avoid do-it-yourself-with-printf solutions, really!

Introduction: Profiling & Tracing

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

313

Program Instrumentation
• detect run-time events (points of interest)
• pass information to run-time measurement library
Profile Recording
• collect aggregated information (Time, Counts, …)
• about program and system entities

– functions, loops, basic blocks
– application, processes, threads, …

Trace Recording
• save individual event records together with precise

timestamp and process or thread ID
• plus event specific information

Event Trace Visualization

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

314

Trace Visualization
• alternative and supplement to automatic analysis
• show dynamic run-time behavior graphically
• provide statistics and performance metrics

– Global timeline for parallel processes/threads
– Process timeline plus performance counters
– Statistic summary display
– Message statistics
– more

• interactive browsing, zooming, selecting
– adapt statistics to zoom level (time interval)
– also for very large and highly parallel traces

VampirServer Architecture

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

315

Merged

Traces

Analysis Server

Classic

Analysis:

Worker 1

Worker 2

Worker m

Master

Trace 1
Trace 2

Trace 3
Trace N

File System

Interne

t

Parallel Program

Monitor

System

Event Streams

Visualization Client

Segment

Indicator

768 Processes

Thumbnail View

Timeline with

16 Traces visible

Process
Parallel I/O Message

Passing

Vampir Displays

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

316

The main displays of Vampir:

• Global Timeline
• Process Timeline w/o Counters
• Statistic Summary
• Summary Timeline
• Message Statistics
• Collective Operation Statistics
• Counter Timeline
• Call Tree

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Vampir Global Timeline Display

317

Process Timeline Display

Process Timeline with Counters

Statistic Summary Display

320

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Summary Timeline Display

321

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Message Statistics Display

322

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Collective Operation Statistics

323

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Counter Timeline Display

324

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Call Tree Display

325

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Instrumentation & Measurement

• What do you need to do for it?
• Instrumentation (automatic with compiler wrappers)

• Re-compile & re-link
• Trace Run (run with appropriate test data set)

• more details later

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

326

mpicc hello.c –o hello

vtcc hello.c –o hello

icc hello.c –o hello

vtcc hello.c –o hello

CC=vtcc

CXX=vtcxx

F90=vtf90

MPICC=vtcc

CC=icc

CXX=icpc

F90=ifc

MPICC=mpicc

Instrumentation & Measurement

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

327

What does VampirTrace do in the background?

• during Instrumentation:

– via compiler wrappers
– by underlying compiler with specific options
– MPI instrumentation with replacement lib
– OpenMP instrumentation with Opari
– also binary instrumentation with Dyninst
– partial manual instrumentation

Instrumentation & Measurement

What does VampirTrace do in the background?

• during Trace Run:

– event data collection
– precise time measurement
– parallel timer synchronization
– collecting parallel process/thread traces
– collecting performance counters (from PAPI,

memory usage, POSIX I/O calls and fork/system/exec
calls, and more ...

– filtering and grouping of function calls

328

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Summary

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

329

• VampirTrace
– convenient instrumentation and measurement
– hides away complicated details
– provides many options and switches for experts

• VampirTrace is part of Open MPI 1.3

• Vampir & VampirServer
– interactive trace visualization and analysis
– intuitive browsing and zooming
– scalable to large trace data sizes (100GB)
– scalable to high parallelism (2000 processes)

• Vampir for Windows in progress, beta available

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

330

VAMPIRTRACE & VAMPIR:
DETAILS AND HANDS-ON

Overview

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

331

– Event tracing in general

– Instrumentation

– Run-time measurement

– Visualization and analysis

Profiling and Tracing

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

332

• Tracing Advantages
– preserve temporal and spatial relationships

– allow reconstruction of dynamic behavior on any
required abstraction level

– profiles can be calculated from trace

• Tracing Disadvantages
– traces can become very large

– may cause perturbation

– instrumentation and tracing is complicated
• event buffering, clock synchronization, …

Common Event Types

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

333

– enter/leave of function/routine/region

• time stamp, process/thread, function ID

– send/receive of P2P message (MPI)

• time stamp, sender, receiver, length, tag, comm.

– collective communication (MPI)

• time stamp, process, root, communicator, # bytes

– hardware performance counter values

• time stamp, process, counter ID, value

– etc.

Open Trace Format (OTF)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

334

• Open source trace file format

• Available at http://www.tu-dresden.de/zih/otf/

• Includes powerful libotf for reading/parsing/writing in
custom applications

• multi-level API:

– High level interface for analysis tools

– Low level interface for trace libraries

• Actively developed in cooperation with the University
of Oregon and the Lawrence Livermore National
Laboratory

Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

335

• Instrumentation: Process of modifying
programs to detect and report events

– call instrumentation functions

– provided by trace library

– call for every run-time event of interest

– there are various ways of instrumentation

Source Code Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

336

int foo(void* arg) {

enter(7);

if (cond) {

leave(7);

return 1;

}

leave(7);

return 0;

}

int foo(void* arg) {

if (cond) {

return 1;

}

return 0;

}

manually or automatically

Source Code Instrumentation

• manually
– large effort, error prone

– difficult to manage

– see documentation of VampirTrace API

• automatically
– via source to source translation

– Program Database Toolkit (PDT)

– OpenMP Pragma And Region Instrumentor (Opari)

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

337

http://www.fz-juelich.de/zam/kojak/opari/

Wrapper Functions

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

338

– provide wrapper functions

• call instrumentation function for notification

• call original target for functionality

• via preprocessor directives:

– via library preload:

• preload instrumented dynamic library

– suitable for standard libraries (e.g. MPI, glibc)

#define MPI_Init WRAPPER_MPI_Init

#define MPI_Send WRAPPER_MPI_Send

The MPI Profiling Interface

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

339

– Each MPI function has two names:
• MPI_xxx and PMPI_xxx

– Replacement of MPI routines at link time

wrapper library

user program

MPI library

MPI_Send

PMPI_Send MPI_Send

MPI_Send

MPI_Send

MPI_SendMPI_Send

Compiler Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

340

gcc -finstrument-functions –c foo.c

many compilers support this: GCC, Intel, IBM, PGI,

NEC, Hitachi, Sun Fortran, …

no source modification necessary

void __cyg_profile_func_enter(<args>);

void __cyg_profile_func_exit(<args>);

Dynamic Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

341

– modify executable in file or binary in memory

– insert instrumentation calls

– very platform/machine dependent, expensive

• DynInst project (http://www.dyninst.org)

– common interface

– supported platforms: Alpha/Tru64, MIPS/IRIX,
PowerPC/AIX, Sparc/Solaris, x86/Linux
x86/Windows, ia64/Linux

http://www.dyninst.org/

Practical Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

342

• Instrumentation with VampirTrace
– hide instrumentation in compiler wrapper
– use underlying compiler, add appropriate options

• Test Run
– use representative test input
– set parameters, environment variables, etc.
– perform trace run

• Get Trace

CC=mpicc

CC=vtcc

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

343

Hands-on: Hello World

Hands-on: Hello World

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

344

• get example

• default build and normal run

%> tar xzf Desktop/Workshop\ Examples/01_hello_world.tgz

%> cd 01_hello_world
%> make
%> mpirun -np 4 ./hello

Hands-on: Hello World

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

345

– enable automatic instrumentation in Makefile:

– re-build with tracing:

CC=mpicc
CC=vtcc -vt:cc mpicc -vt:verbose

%> make clean
%> make

Hands-on: Hello World

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

346

– run instrumented version:
%> export VT_BUFFER_SIZE="10M"
%> export VT_FILE_PREFIX="trace_hello1"

%> mpirun -np 4 ./hello

%> ls -alh
1.7K trace_hello1.0.def.z
214 trace_hello1.1.events.z
213 trace_hello1.2.events.z
212 trace_hello1.3.events.z
208 trace_hello1.4.events.z
16 trace_hello1.otf

%> mpirun -np <X> vngd %> vng &

Hands-on: VampirServer

347

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

348

Hands-on: More Displays

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

349

Hands-on: More Displays

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

350

VAMPIRTRACE:
Run-Time Parameters

VampirTrace Run-Time Options

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

351

• control options by environment variables:

VT_PFORM_GDIR Directory for final trace files
VT_PFORM_LDIR Directory for intermediate files
VT_FILE_PREFIX Trace file name
VT_BUFFER_SIZE Internal trace buffer size
VT_MAX_FLUSHES Max number of buffer flushes
VT_MEMTRACE Enable memory allocation tracing
VT_IOTRACE Enable I/O tracing
VT_MPITRACE Enable MPI tracing
VT_FILTER_SPEC Name of filter definition file
VT_GROUPS_SPEC Name of grouping definition file
VT_METRICS PAPI counter selection

PAPI

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

352

– PAPI counters can be included in traces

• If VampirTrace was build with PAPI support

• If PAPI is available on the platform

– VT_METRICS specifies a list of PAPI counters

– see also the PAPI commandes papi_avail and
papi_command_line

export VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM

Memory Allocation Counters

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

353

– Memory allocation counters can be recorded:

• If build with mem. allocation tracing support

• If GNU glibc is used on the platform

– intercept glibc functions like “malloc” and “free”

– Environment variable VT_MEMTRACE

export VT_MEMTRACE=yes

Environment Variables

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

354

– I/O counters can be included in traces

• If VampirTrace was build with I/O tracing support

– Standard I/O calls like “open” and “read” are
recorded

– Environment variable VT_IOTRACE

export VT_IOTRACE=yes

Function Filtering

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

355

– Filtering is one of the ways to reduce trace size
– Environment variable VT_FILTER_SPEC

– Filter definition file contains a list of filters

– See also the vtfilter tool
• can generate a customized filter file
• can reduce the size of existing trace files

export VT_FILTER_SPEC=/home/user/filter.spec

my_*;test_* -- 1000
debug_* -- 0
calculate -- -1
* -- 1000000

Function Grouping

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

356

– Groups can be defined for related functions

• Groups can be assigned different colors, highlighting
different activities

– Environment variable VT_GROUPS_SPEC

– Groups file contains lists of associated entries

export VT_GROUPS_SPEC=/home/<user>/groups.spec

CALC=calculate
MISC=my*;test
UNKNOWN=*

357

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

hands-on for homework, not covered during the tutorial
Hands-on: SMG 2000 (homework)

Hands-on: SMG 2000

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

358

– prepare:

– check compiler/linker flags in Makefile.include

– compile and run

%> tar xvzf 02_smg2000.tar.gz
%> cd smg2000

%> make
%> mpirun -np 8 ./test/smg2000 -P 2 2 2 \
-n 100 100 100 -c 2.0 3.0 40 -d 3 -solver 3

CC=mpicc

Hands-on: SMG 2000

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

359

– instrument by replacing compiler command in
Makefile.include:

– re-compile and run

– open with VampirServer

%> make clean; make
%> export VT_BUFFER_SIZE="10M"
%> export VT_FILE_PREFIX="smg1"
%> mpirun -np 8 ./test/smg2000 -P 2 2 2 \
-n 100 100 100 -c 2.0 3.0 40 -d 3 -solver 3

CC=vtcc –vt:cc mpicc -vt:verbose

%> mpirun -np <X> vngd %> vng &

Hands-on: SMG 2000

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

360

– change file prefix

– create files 'groups' and 'filter‘

– no re-compilation, only re-run

%> export VT_FILE_PREFIX="smg2"

hypre_struct=HYPRE_Struct*;hypre_Struct*
hypre_compute=hypre_Comput*;HYPRE_Comput*
hypre=hypre_*;HYPRE_*

%> export VT_GROUPS_SPEC=groups
%> export VT_FILTER_SPEC=filter
%> mpirun -np 8 ./test/smg2000 -P 2 2 2 \
-n 100 100 100 -c 2.0 3.0 40 -d 3 -solver 3

hypre_Free -- 100
hypre_CAlloc;hypre_MAlloc -- 0

Hands-on: SMG 2000

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

361

– change file prefix

– specify counters

– see PAPI commands for available counters:

• papi_avail and papi_native_avail

– no re-compilation, only re-run

%> export VT_FILE_PREFIX="smg3"
%> unset VT_GROUPS_SPEC
%> unset VT_FILTER_SPEC

%> export VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM

%> mpirun -np 8 ./test/smg2000 -P 2 2 2 \
-n 100 100 100 -c 2.0 3.0 40 -d 3 -solver 3

Hands-on: SMG 2000+OpenMP

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

362

– change Makefile.include for OpenMP support

– Opari source-to-source instrumentation

– requires special options for mulit-dir build

– run with OpenMP

CC = vtcc -openmp -vt:hyb -vt:verbose \
-vt:opari "-table <pwd>/test/opari.tab.c \
-rcfile <pwd>/test/opari.rc"
INCLUDE_CFLAGS= -O -DTIMER_USE_MPI \
-DHYPRE_USING_OPENMP ## activate OpenMP in SMG

%> export VT_FILE_PREFIX="smg4"
%> export VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM
%> export OMP_NUM_THREADS=2
%> mpirun -np 8 ./test/smg2000 -P 2 2 2 \
-n 100 100 100 -c 2.0 3.0 40 -d 3 -solver 3

Hands-on: SMG 2000

• open SMG2000 trace from previous hands-on
homework section or larger pre-prepared trace

• browse and analyze:

– which function is called most often?

– which function consumes most run-time?

– identify a single iteration in the main solver

– which function consumes most run-time
in a single iteration?

– which function achieves highest FLOP/s rate?

– what is the average MPI communication speed?

363

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

364

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Hands-on: Mandelbrot Example with
Performance Counters

Hands-on: Performance Counters

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

365

– tasks:
• modify Makefile for compiler instrumentation
• specify counters for Flops and cache misses
• set the file name prefix to “mdlb1” and the buffer

size to 10M
• run instrumented program:

• open trace with VampirServer
• investigate three phases of the program
• how does performance differ? and why?

%> tar xvzf 03_mandelbrot.tgz; cd 03_mandelbrot

%> ./mandelbrot -2.0 -1.0 1.0 1.0 0.001 50

366

Hands-on: Performance Counters

Extra: Manual Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

367

– change the file name prefix to “mdlb2”
– insert additional manual instrumentation

(see also VampirTrace documentation)

– catch all iterations of the outer loops
– re-compile
– re-run

#include "vt_user.h“

VT_USER_START("name");
...
VT_USER_END("name");

Extra: Manual Instrumentation

– open new trace in Vampir

– what's wrong with the resulting trace?

• fix it with VT_MAX_FLUSHES and
VT_BUFFER_SIZE

• is it really better now?

• can one see more with more data?

• advanced: add a user defined counter that
records the loop counter variable

368

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

369

Extra: Manual Instrumentation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

370

Finding Performance Bottlenecks

Finding Bottlenecks

• Trace Visualization
– Vampir provides a number of display types
– each allows many different options

• Advice
– identify essential parts of an application (initialization,

main iteration, I/O, finalization)
– identify important components of the code (serial

computation, MPI P2P, collective MPI, OpenMP)
– make a hypothesis about performance problems
– consider application's internal workings if known
– select the appropriate displays
– use statistic displays in conjunction with timelines

371

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Finding Bottlenecks

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

372

– Communication

– Computation

– Memory, I/O, etc

– Tracing itself

Bottlenecks in Communication

– communication as such
(dominating over computation)

– late sender, late receiver
– point-to-point messages instead of

collective communication
– unmatched messages
– overcharge of MPI’s buffers
– bursts of large messages (bandwidth)
– frequent short messages (latency)
– unnecessary synchronization (barrier)

all of the above usually result in high MPI time share

373

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Example: prevalent communication

374

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Bottlenecks in Communication

375

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

prevalent communication: MPI_Allreduce

Bottlenecks in Communication

376

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

prevalent communication: timline view

Bottlenecks in Communication

377

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Propagated Delays in MPI_SendReceiveReplace

Bottlenecks in Communication

378

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

unnecessary MPI_Barriers

Bottlenecks in Communication

379

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Patterns of Successive MPI_Allreduce Calls

Bottlenecks in Communication

Further Bottlenecks

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

380

– unbalanced computation

• single late comer

– strictly serial parts of program

• idle processes/threads

– very frequent tiny function calls

– sparse loops

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

381

Example: Idle OpenMP threads

Further Bottlenecks

Bottlenecks in Computation

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

382

– memory bound computation

• inefficient L1/L2/L3 cache usage

• TLB misses

• detectable via HW performance counters

– I/O bound computation

• slow input/output

• sequential I/O on single process

• I/O load imbalance

– exception handling

low FP rate due to heavy cache misses
Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

383

Bottlenecks in Computation

low FP rate due to heavy FP exceptions

384

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

Bottlenecks in Computation

385

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

irregular slow I/O operations

Bottlenecks in Computation

Effects due to Tracing Itself

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

386

– measurement overhead

• esp. grave for tiny function calls

• solve with selective instrumentation

– long/frequent/asynchronous trace buffer flushes

– too many concurrent counters

– heisenbugs

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

387

Trace buffer flushes are explicitly marked in the trace.

It is rather harmless at the end of a trace as shown here.

Effects due to Tracing Itself

Conclusion and Outlook

– performance analysis very important in HPC

– use performance analysis tools for profiling and tracing
– do not spend effort in DIY solutions,

e.g. like printf-debugging

– use tracing tools with some precautions
• overhead
• data volume

– let us know about problems and about feature wishes
– vampirsupport@zih.tu-dresden.de

388

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de

Vampir and VampirTraces are

available at http://www.vampir.eu and

http://www.tu-dresden.de/zih/vampirtrace/ ,

get support via vampirsupport@zih.tu-dresden.de

389

Parallel Performance Evaluation Tools for HPC Systems: ICCS „09

http://www.vampir.eu/
http://www.tu-dresden.de/zih/vampirtrace/
http://www.tu-dresden.de/zih/vampirtrace/
http://www.tu-dresden.de/zih/vampirtrace/
mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de

